Random throwing of industrial waste has a significant impact on the environment unless it takes into account the conditions of engineered destroying and/or re-used. Taking the advantage of re-using waste materials in engineering projects represents a well-planned project in order to resolve a lot of engineering problems for some difficult soils. The objective of this study was to evaluate the capability and effects of Rubber Shreds (RS) from scrap torn belts towards improving the shear strength of soft clay. A direct shear tests were conducted on soft clay-RS mixture. The following parameters were investigated to study the influence of RS content, water content, normal stress, and dilation ratio. From experimental test results it was found that previous parameters affecting the shear strength of soft clay. Increasing RS content was found effective in improving the shear strength of soft clay when the normal stress increases provided that fixed water content used in the mixture. Cohesion, c and angle of friction, f were increased by ratio of (1.4-2.3) and (1.5-2) respectively. However, it was revealed that RS content mustn’t exceed the liquid limit level of soft soil. If the water content increases and exceeding the liquid limit level of soft clay, shear strength, cohesion and angle of friction will begin to decrease by reduction percentage of (15%-55%) and (20%-45%) respectively in spite of 30% rubber inclusion. The dilation ratio was highly affected by water content increment; disturbed path of dilation ratio were observed with increasing water content in soil mixture.
This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
The combination of carbon nanotubes (CNT) and conducting polymers offers an attractive route for the production of novel compounds that can be used in a variety of applications such as sensors, actuators, and molecular scale electronic devices. In this work, functionalized multiwall carbon nanotubes (f-MWCNTs) were added in different load ratios (3 wt%, 5 wt% and 10 wt%) to thiophen (PTh) polymer to procedure PTh/CNTs nanocomposite and deposited on porous silicon substrate by electropolarization. Photoconductive detectors were fabricated using PTh/f-MWCNTs matrix to work in the near region and middle IR regions. These detectors were illuminated by semiconductor laser diode wavelength of 808(nm) and Nd-YAG laser of wavelength 1064 (n
... Show MoreThis work reports the development of an analytical method for the simultaneous analysis of three fluoroquinolones; ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) in soil matrix. The proposed method was performed by using microwave-assisted extraction (MAE), solid-phase extraction (SPE) for samples purification, and finally the pre-concentrated samples were analyzed by HPLC detector. In this study, various organic solvents were tested to extract the test compounds, and the extraction performance was evaluated by testing various parameters including extraction solvent, solvent volume, extraction time, temperature and number of the extraction cycles. The current method showed a good linearity over the concentration ranging from
... Show MoreTo learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
Research aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven
... Show MoreEnvironmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib
A laboratory investigation of six different tests were conducted on silty clay soil spiked with lead in concentrations of 1500 mg/kg. A constant DC voltage gradient of 1 V/cm was applied for all these tests with duration of 7 days remediation process for each test. Different purging solutions and addition configurations, i.e. injection wells, were investigated experimentally to enhance the removal of lead from Iraqi soil during electro-kinetic remediation process. The experimental results showed that the overall removal efficiency of lead for tests conducted with distilled water, 0.1 M acetic acid, 0.2 M EDTA and 1 M ammonium citrate as the purging solutions were equal to 18 %, 37 %, 42 %, and 29 %, respectively. H
... Show MoreThe degradation performance of aqueous solution of pesticide Alachlor has been studied at solar pilot scale plant in two photocatalytic systems: homogeneous photocatalysis by photo-Fenton and heterogeneous photocatalysis with titanium dioxide. The pilot scale system included of compound parabolic collectors specially designed for solar photocatalytic applications, and installed at University of Baghdad, Department of Environmental Engineering back yard. The influence of different concentrations, H2O2 (200-2400 mg/l), Fe+2(5- 30 mg/l) and TiO2 (100-500 mg/l) and their relationship with the degradation efficiency were studied.
The COD removal efficienc
... Show More