The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force control. They are designed and simulated to improve the desired joints position specifications such as minimum overshoot, minimum oscillation, minimum steady state error, and disturbance rejection during tracking the desired position medical trajectory. Ant Colony Optimization (ACO) is used to tune the gains of position and force parts of the Force-Position controllers to get the desired position trajectory according to the required specification. A comparison between the force-position controllers tuned manually and tuned by ACO shows an enhancement in the results of the second type as compared with the first one with an average of 39%.
The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast co
... Show MoreThe current study aims to investigate the second cycle students’ motives for using electronic games in Oman. The sample consisted of (570) students, (346 males and 224 females). The participants completed an open-ended question which was analyzed based on ground theory. The results showed that (46.820%) of the males and (77.678) of the females played electronic games for pleasure, entertainment, and fun. This first category of motivation got the highest percentage of frequency (58.947%). The motive to become a hacker, a popular YouTuber got the lowest percentage (2.280%). Other students’ motives toward playing electronic games included: filling the leisure time, overcoming boredom, feeling adventures, getting science fiction and chal
... Show MoreIn this study, the feasibility of Forward–Reverse osmosis processes was investigated for treating the oily wastewater. The first stage was applied forward osmosis process to recover pure water from oily wastewater. Sodium chloride (NaCl) and magnesium chloride (MgCl2) salts were used as draw solutions and the membrane that was used in forward osmosis (FO) process was cellulose triacetate (CTA) membrane. The operating parameters studied were: draw solution concentrations (0.25 – 0.75 M), oil concentration in feed solution (FS) (100-1000 ppm), the temperature of FS and draw solution (DS) (30 - 45 °C), pH of FS (4-10) and the flow rate of both DS and FS (20 - 60 l/h). It was found that the water flux and oil concentration in FS increas
... Show MoreThe usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
Alongside the development of high-speed rail, rail flaw detection is of great importance to ensure railway safety, especially for improving the speed and load of the train. Several conventional inspection methods such as visual, acoustic, and electromagnetic inspection have been introduced in the past. However, these methods have several challenges in terms of detection speed and accuracy. Combined inspection methods have emerged as a promising approach to overcome these limitations. Nondestructive testing (NDT) techniques in conjunction with artificial intelligence approaches have tremendous potential and viability because it is highly possible to improve the detection accuracy which has been proven in various conventional nondestr
... Show MoreThis research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Hydroponics is the cultivation of plants by utilizing water without using soil which emphasizes the fulfillment of the nutritional needs of plants. This research has introduced smart hydroponic system that enables regular monitoring of every aspect to maintain the pH values, water, temperature, and soil. Nevertheless, there is a lack of knowledge that can systematically represent the current research. The proposed study suggests a systematic literature review of smart hydroponics system to overcome this limitation. This systematic literature review will assist practitioners draw on existing literature and propose new solutions based on available knowledge in the smart hydroponic system. The outcomes of this paper can assist future r
... Show MoreAutomation is one of the key systems in modern agriculture, providing potential solutions to the challenges related to the growing world population, demographic shifts, and economic situation. The present article aims to highlight the importance of precision agriculture (PA) and smart agriculture (SA) in increasing agricultural production and the importance of environmental protection in increasing production and reducing traditional production. For this purpose, different types of automation systems in the field of agricultural operations are discussed, as well as smart agriculture technologies including the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), big data analysis, in addition to agricultural robots,
... Show More