The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force control. They are designed and simulated to improve the desired joints position specifications such as minimum overshoot, minimum oscillation, minimum steady state error, and disturbance rejection during tracking the desired position medical trajectory. Ant Colony Optimization (ACO) is used to tune the gains of position and force parts of the Force-Position controllers to get the desired position trajectory according to the required specification. A comparison between the force-position controllers tuned manually and tuned by ACO shows an enhancement in the results of the second type as compared with the first one with an average of 39%.
Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d
Were analyzed curved optical fates Almarchih absolute colony of the binary type, the Great Palmstqrh using mathematical relationships derived for that and that gave us the results closer to the results of the observed spectral Great Colonial
The samples were collected monthly crustaceans Mjmafah foot of two stations in tributary Zab down and two others in the Tigris River for one year with effect from November 2001 until October 2002 recorded during the study period the current 41 units taxonomic and were higher density of Mjmafah foot Guy Tigris River before the mouth of the tributary
This study investigates self-perception and self-branding on Instagram among young Arab women in the UAE, focusing on how they curate, negotiate and perform their digital identities and whether their digital self-presentation in any way compromises their sense of authenticity. The study is based on 11 interviews with young women in the UAE, between the ages of 20 and 30, in addition to online observation to follow the participants’ activities on Instagram. The study demonstrates that while social and digital media platforms may play a role in “empowering” Arab women, women tend to set their boundaries of authenticity shaped according to their audience’s expectations and their in-groups. This confirms the r
... Show MoreThe research aims to build a training program to develop the willpower in the kindergarten children. In order to achieve the objective of the research, the two researchers have developed a Training Program according to the following steps:
- Determining the general objective of the Training Program.
- Determining the behavioral objectives of the Training Program.
- Determining the content of the Training Program.
- Implementing the content of the Training Program sessions.
- Evaluating the Training Program.
The training program consisted of (15) sessions, each session included a set of parts (title, general objective, methods, time and place to implement the sessions, behavioral goals, tool
... Show MoreAbstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show More<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show More