The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force control. They are designed and simulated to improve the desired joints position specifications such as minimum overshoot, minimum oscillation, minimum steady state error, and disturbance rejection during tracking the desired position medical trajectory. Ant Colony Optimization (ACO) is used to tune the gains of position and force parts of the Force-Position controllers to get the desired position trajectory according to the required specification. A comparison between the force-position controllers tuned manually and tuned by ACO shows an enhancement in the results of the second type as compared with the first one with an average of 39%.
Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol
This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
The research deals with Iraq's position of the Lebanese civil war and the Efforts made by Iraq in order to stop the bleeding of this war, the research also deals with the nature of regime in Lebanon and the developments that preceded the war and the positions of the internal and external competing forces, as weu as handling the Iraqi Syrian disagreement and it's impaet on the situation of Lebanon and the war developments.
The research focused on the Iraq's position towards the externd proposed solutions to solve the Lebanese civil war.
In this paper, a microcontroller-based electronic circuit have been designed and implemented for dental curing system using 8-bit MCS-51 microcontroller. Also a new control card is designed while considering advantages of microcontroller systems the time of curing was controlled automatically by preset values which were input from a push-button switch. An ignition based on PWM technique was used to reduce the high starting current needed for the halogen lamp. This paper and through the test result will show a good performance of the proposed system.
This paper aims to develop a technique for helping disabled people elderly with physical disability, such as those who are unable to move hands and cannot speak howover, by using a computer vision; real time video and interaction between human and computer where these combinations provide a promising solution to assist the disabled people. The main objective of the work is to design a project as a wheelchair which contains two wheel drives. This project is based on real time video for detecting and tracking human face. The proposed design is multi speed based on pulse width modulation(PWM), technique. This project is a fast response to detect and track face direction with four operations movement (left, right, forward and stop). These opera
... Show MoreProstheses are used as an alternative to organs lost from the body. Flex-Foot Cheetah is considered one of the lower limb prostheses used in high-intensity activities such as running. This research focused on testing two samples of Flex-Foot Cheetah manufactured of two various materials (carbon, glass) with polyester and compare between them to find the foot with the best performance in running on the level of professional athlete. In the numerical analysis, the maximum principal stress, maximum principal elastic strain, strain energy; finally, the blade total deformation were calculated for both feet. In experimental work, the load-deflection test was done for foot to calculate the bending the results were very close to
... Show MoreIn recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr
... Show MorePeak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD
... Show More