The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is implemented based on hybrid Crossoved Firefly Algorithm with Artificial Bee Colony (CFA-ABC) to tune the controller's parameters to achieve the optimal path. The performance of the hybrid optimization algorithm is verified by various benchmark functions. The simulation results show that the utilizing of CFA and (CFA-ABC ) are better than the original Firefly Algorithm. A simulation example is given to indicate the effectiveness of the proposed algorithm, the results have been done using MATLAB (R2013b), and all trajectory tracking results with two reference trajectories (circular and lemniscates ) are presented.
ZnO organic hybrid junction (electroluminescence EL device) was fabricated using phase segregation method. ZnO-nanoparticle (NPs) was prepared as a colloidal by self–assembly method of Zinc acetate solution with KOH solution. Nanoparticle is employed to form organic-inorganic hybrid film and generate white light emission, while N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’-diamine (TPD) and polymethyl methacrylate (PMMA) are adopted as the organic matrices. ZnO NPs was used to fabricate TPD: PMMA: ZnO NPs hybrid junction device. The photoluminescence (PL) and electroluminescence (EL) spectra of the TPD: PMMA: ZnO NPs hybrid device provided a broad emission band covering entirely the visible spectrum (∼350-∼700
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreIn this paper , the CO2 laser receiver system is designed and studied, with wavelength laser 10.6 ?m in room temperature , and to evaluate the performance and discussion it via the package of optical design (ZEMAX), from its output the Spot Diagram is measured through RMS ,and from the Ray fan plot , the aberrations is found which is the normal error for the best focus named (under corrected ) , the other output was the Geometric Encircled Energy in the spot diagram . and found that the radius of spot diagram at 80% (R80%) from the total energy ,and focal shift .The designed system have high efficiency and low cost .
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreDesigning Teaching Aids and Their Effects on Learning and Retaining Diving and Cartwheel on Floor Exercises in Women’s’ Artistic Gymnastics
The research aimed at designing teaching aids that develop and help retain diving and cartwheel for third year college of physical education and sport sciences students in women’s artistic gymnastics. In addition to that, the researchers aimed at identifying the effect of these aids on learning and retaining cartwheel and diving in floor exercises. The researchers used the experimental method. The subjects were (20) third year female students from the college of physical education and sport sciences/ university of Baghdad sections K and H. the main experiment lasted for
... Show Moreأساس انتقال المخاطر في عقود التجارة الدولية
This Study aimed To know The relation between Types of blood and health problems which human Suffered from , and the effect of food intake on health.
Samples of study contained 269 person aged between 30 – 70 years which choiced randomly for sex , we are take all in formation about samples of study by form paper contian sex , age, type of blood , weight (kg) , height (cm) , smoking or.not , sporting or not, problems in digestive tract , sensitivity for foods , heart problems , ratio of cholesterol in blood , Sinusitis , Asthma , diabetic meliuts , arritable bowel syndrome , diaherra , problems in kidney and urination , hypertension , anemia , alternation in liver function , arthritis with form record in daily food intake and its ade
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreHomomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show More