This paper has investigated experimentally the dynamic buckling behavior of AISI 303 stainless steel Aluminized and as received long columns. These columns, hot-dip aluminized and as received, are tested under dynamic buckling, 22 specimens, without aluminizing (type 1), and 50 specimens, with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), are tested under dynamic compression loading and under dynamic combined loading (compression and bending) by using a rotating buckling test machine. The experimental results are compared with Perry Robertson interaction formula that used for long columns. Greenhill formula is used to get a mathematical model that descripts the buckling behavior of the specimens of type (1) under dynamic compression loading. The experimental results obtained show an advantageous influence of hot-dip aluminizing treatment on dynamic buckling behavior of AISI 303 stainless steel long columns. The improvement based on the average value of critical buckling stress, are as follow: (64.8 %) for long columns type (2), compared with columns type (1), under dynamic compression loading, and (56.6 %) for long columns type (2), compared with columns type (1), under dynamic combined loading, and (33.3 %) for long columns type (2) compared with Perry Robertson critical buckling stress.
The characteristics of sulfur nanoparticles were studied by using atomic force microscope (AFM) analysis. The atomic force microscope (AFM) measurements showed that the average size of sulfur nanoparticles synthesized using thiosulfate sodium solution through the extract of cucurbita pepo extra was 93.62 nm. Protecting galvanized steel from corrosion in salt media was achieved by using sulfur nanoparticles in different temperatures. The obtained data of thermodynamic in the presence of sulfur nanoparticles referred to high value as compares to counterpart in the absence of sulfur nanoparticles, the high inhibition efficiency (%IE) and corrosion resistance were at high temperature, the corrosion rate or weig
... Show MoreBuckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g
... Show MoreThis paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh
... Show MoreStability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter “m”, whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of
... Show MoreBackground: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left u
... Show MoreSKF Sami I. Jafar, Mohammad J. Kadhim, Engineering and Technology Journal, 2018 - Cited by 4
Background: The aim of this study was to evaluate and compare the static frictional forces produced by monocrystalline ceramic (sapphire) bracket and polycrystalline ceramic bracket. Materials and methods: one hindered twenty brackets/segment of archwire combinations were used, each bracket/segment of archwire combination was tested 10 times. The tests were performed in a universal testing Instron machine. The data was submitted to in depended t-test. Results: The independent sample t-tests showed a highly significant difference in the static frictional forces between monocrystalline ceramic (sapphire) bracket and polycrystalline ceramic bracket. Conclusion: According to the biomechanical result gained from the present study, the monocryst
... Show MoreInsulin resistance is a fundamental feature of obesity, diabetes, and cardiovascular diseases and contributes to many of the metabolic syndrome's abnormalities. It is defined as a subnormal reaction to normal insulin concentrations or a situation in which greater than normal insulin concentrations are necessary for normal response.