Preferred Language
Articles
/
alkej-276
Experimental Study and Numerical Simulation of Sheet Hydroforming Process for Aluminum Alloy AA5652
...Show More Authors

 Abstract   

Lightweight materials is used in the sheet metal hydroforming process,  because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution)  with results  of finite element analyses (FEA)  (ANSYS 11)  for aluminum alloy (AA5652) sheets with  thickness (1.2mm) before heat treatment (BHT) and after heat treatment (AHT) respectively in the circular die with cavity equals to (20mm) . The comparison of results by these two approaches show the same tendency that an improvement formability, also  the plastic deformation is greatly enhanced AHT for same metal.

 Keyword : sheet hydroforming , stress and strain distribution, aluminum alloy, forming limit diagram.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
Prestressing Effects on Full Scale Deep Beams with Large Web Openings¨: An Experimental and Numerical Study
...Show More Authors

Most studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Advances In Science And Technology Research Journal
Impact of TIG Welding Parameters on the Mechanical Properties of 6061-T6 Aluminum Alloy Joints
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Expanded Pipe using Rigid Conical Shape
...Show More Authors

The experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Numerical and Experimental Analysis of Aircraft Wing Subjected to Fatigue Loading
...Show More Authors

This study deals with the aircraft wing analysis (numerical and experimental) which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651) the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34) specimen of (aluminum alloy 7075-T651) were tested using alternating bending fatigue machine rig. The t

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Incompressible Flow over an Iced Airfoil
...Show More Authors

Determining the aerodynamic characteristics of iced airfoil is an important step in aircraft design.  The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Research on Flow-Induced Vibration in Valves
...Show More Authors

Abstract  

All central air conditioning systems contain piping system with various components, sizes, material, and layouts. If such systems in operating mode, the flow in piping system and its component such as valves can produce severe vibration due to some flow phenomenon’s. In this research, experimental measurements and numerical simulation are used to study the flow-induced vibration in valves. Computational fluid dynamics (CFD) concepts are included with one-way and two-way fluid-structure interaction concepts by using finite element software Package (ANSYS 14.57). Detection analysis is performed on flow characteristics under operation conditions and relations with structural vibration. Most of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Numerical Simulation of Thermal-Hydrodynamic Behavior within Solar Air Collector
...Show More Authors

Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Ice Melting Using the Finite Volume Method
...Show More Authors

The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of flow in pipe with cross jet effects
...Show More Authors

A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 30 2025
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Solar Granulation Dynamics Using Optical Correction Techniques
...Show More Authors

High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,

... Show More
View Publication Preview PDF
Scopus Crossref