A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherwood number, are presented for wide range of the buoyancy ratio , angle of inclined glass cover with horizontal coordinate , Lewis number , thermal Rayleigh number , and Prandtl number . The results show that above parameters have strong influences on the patterns of streamline, isotherms, isoconcentration, average Nusselt number and average Sherwood number. Results show that a decrease in the angle of inclined glass cover with horizontal coordinate ( leads to increase average Nusselt number and average Sherwood number. For (N > 0), both average Nusselt number and average Sherwood number increase with increasing of buoyancy ratio and Rayleigh number. By contrast for ( these values decreases. Also, increasing of the buoyancy ratio for positive (N > 0), at the same Rayleigh number enhance the heat and mass transfer rate. A comparison is made with the previous numerical results and it found to be reveal a good agreement.
In this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreThis study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of
... Show MoreReducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi
Strengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the e
... Show MoreContinuous turbidimetric analysis (CTA) for a distinctive analytical application by employing a homemade analyser (NAG Dual & Solo 0-180°) which contained two consecutive detection zones (measuring cells 1 & 2) is described. The analyser works based on light-emitting diodes as a light source and a set of solar cells as a light detector for turbidity measurements without needing further fibres or lenses. Formation of a turbid precipitated product with yellow colour due to the reaction between the warfarin and the precipitation reagent (Potassium dichromate) is what the developed method is based on. The CTA method was applied to determine the warfarin in pure form and pharmaceu
Continuous turbidimetric analysis (CTA) for a distinctive analytical application by employing a homemade analyser (NAG Dual & Solo 0-180°) which contained two consecutive detection zones (measuring cells 1 & 2) is described. The analyser works based on light-emitting diodes as a light source and a set of solar cells as a light detector for turbidity measurements without needing further fibres or lenses. Formation of a turbid precipitated product with yellow colour due to the reaction between the warfarin and the precipitation reagent (Potassium dichromate) is what the developed method is based on. The CTA method was applied to determine the warfarin in pure form and pharmaceu