In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between the structure and fluid by using a Newmark’s implicit time integration scheme. The results obtained from this paper show that the proposed modeling can be used for a quick assessment of the wind turbine blades taking the fluid-structure interaction into account. This modeling can also be a useful tool for the analysis of airplane propeller blades.
Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co
This research paper aimed to quantitively characterize the pore structure of shale reservoirs. Six samples of Silurian shale from the Ahnet basin were selected for nitrogen adsorption-desorption analysis. Experimental findings showed that all the samples are mainly composed of mesopores with slit-like shaped pores, as well as the Barrett-Joyner-Halenda pore volume ranging from 0.014 to 0.046 cm3/ 100 g, where the lowest value has recorded in the AHTT-1 sample, whereas the highest one in AHTT-6, while the rest samples (AHTT-2, AHTT-3, AHTT-4, AHTT-5) have a similar average value of 0.03 cm3/ 100 g. Meanwhile, the surface area and pore size distribution were in the range of 3.8 to 11.1 m2 / g and 1.7 to 40 nm, respectively.
... Show MoreResearchers have identified and defined β- approach normed space if some conditions are satisfied. In this work, we show that every approach normed space is a normed space.However, the converse is not necessarily true by giving an example. In addition, we define β – normed Banach space, and some examples are given. We also solve some problems. We discuss a finite β-dimensional app-normed space is β-complete and consequent Banach app- space. We explain that every approach normed space is a metric space, but the converse is not true by giving an example. We define β-complete and give some examples and propositions. If we have two normed vector spaces, then we get two properties that are equivalent. We also explain that
... Show MoreIn terms of the core nucleus plus valence nucleon, shell-model calculations using two model spaces and interactions, the relationship between a nucleus' proton skin, and the difference in proton radii of mirror pairs of nuclei with the same mass number are investigated. In this work, two pairs of mirror nuclei will be studied: 17Ne-17N and 23Al-23Ne. For 17Ne-17N nuclei, p-shell and mixing of psd orbits are adopted with Cohen-Kurath (ckii) and psdsu3 interactions. While for 23Al-23Ne, the sd-shell and sdpf shell are adopted with the universal shell model (USD) and sdpfwa interactions. Also, the ground state density distributions, elastic form factors, and root mean square radii of these pairs' nuclei are studied and com
... Show MoreThe focus of this work is on systematically understanding the effects of packing density of the sand grains on both the internal and bulk mechanical properties for strip footing interacting with granular soil. The studies are based on particle image velocimetry (PIV) method, coupled with a high resolution imaging camera. This provides valuable new insights on the evolution of slip planes at grain-scale under different fractions of the ultimate load. Furthermore, the PIV based results are compared with finite element method simulations in which the experimentally characterised parameters and constitutive behaviour are fed as an input, and a good level of agreements are obtained. The reported results would serve to the practicing engineers, r
... Show MoreIn this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa2CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples’ compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa2CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples’ well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sa
... Show MoreThe field of structural optimization (optimal design) has grown rapidly over the past decades with many different optimization methods that could be used to produce a structure of minimum weight. This research deals with two aspects, in the first, a general numerical technique based on the finite element analysis and it suggests to investigate the preliminary behavior of metal stiffened plate under action of static load environment. The technique was included a finite element model of the structures using high- order isoparimetric plate elements to be used to create a certain models to obtain their optimum design. The models are characterized such that, each model is builded using different types of stiffener configuration. The second as
... Show MoreAbstract:
This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.
The comparison was done by simulation using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood with sample size (n = 30) is the best to represent the maternal mortality data after it has been reliance value param
... Show More