In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between the structure and fluid by using a Newmark’s implicit time integration scheme. The results obtained from this paper show that the proposed modeling can be used for a quick assessment of the wind turbine blades taking the fluid-structure interaction into account. This modeling can also be a useful tool for the analysis of airplane propeller blades.
English is spoken by its native speakers in two different forms. Reduced form which marks the colloquial and rapid speech so that it is easily produced and a citation or unreduced form which is a characteristic of careful, emphasized and slow speech.
This paper investigates Iraqi EFL university students’ production of the two forms mentioned above. The sample chosen includes twenty fourth year students, of which ten are males and the other ten are females from the Department of English of the College of Languages of the University of Duhok in Kurdistan Region of Iraq in the academic year 2020-2021. The material tested is six connective words which represent the commonest ones in every-day co
... Show MoreThe study is done in the period between (February 20 and October 20) by using ten adult quail Coturnix coturnix (Linnaeus, 1758). The sections are preparing by paraffin method then stain in Harris haematoxylin-eosin. The histological aspects of spinal cord in quail (Coturnix coturnix) the white matter is in the outer part, while the gray matter is arranged in from of X represents its internal part, the dorsal region is called the dorsal horns while the ventral region is called the ventral horns and the central canal cavity, the spinal cord areas appeared as follows: The medial column, column of von Lenhossek, lateral column, dorsal magnocellular column and marginal paragriseal, columns are also called Hoffmann’s nuclei.
This research was conducted to study the histological structure of the eye in the tree frog (Hyla arborea savignyi) and showed that it is composed of the eyeball and the lens and optic nerve. Appeared eyeball is surrounded by three Tunica from the inside to the outside are Tunica Interna, Tunica vasculosa, Tunica fibrosa. The tunica interna consists of the retina that consists of 10 layers are from outer to inner pigment epithelial layer, rods and cones layer, external limiting membrane, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer , ganglion cells layer , nerve fibers layer, internal limiting membrane .The vascular tunic or Uvea consists of the choroid, ciliary body , and iris . The fibrous coat co
... Show MoreA skip list data structure is really just a simulation of a binary search tree. Skip lists algorithm are simpler, faster and use less space. this data structure conceptually uses parallel sorted linked lists. Searching in a skip list is more difficult than searching in a regular sorted linked list. Because a skip list is a two dimensional data structure, it is implemented using a two dimensional network of nodes with four pointers. the implementation of the search, insert and delete operation taking a time of upto . The skip list could be modified to implement the order statistic operations of RANKand SEARCH BY RANK while maintaining the same expected time. Keywords:skip list , parallel linked list , randomized algorithm , rank.
Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
Single mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements
This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreIn the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2,
... Show MoreThe quantum chromodynamics theory approach was taken to study the photonic emission from interaction of quark gluon at high at Bremsstrahlung processes. Strength coupling, quark charge 𝑒𝑞 , flavor number 𝑛𝐹 , thermal energy T of system, fugacity of gluon ƛ𝑔, fugacity of quark ƛ𝑞 , critical temperature 𝑇𝐶 and photons energy 𝐸 are taken to calculate photons rate via the quantum system. Photons emission rate studies and calculates via high energy 400MeV to 650 MeV using flavor number 3 and 7 for 𝑢̅𝑔 → 𝑑̅𝑔𝛾 and 𝑐𝑔 → 𝑠𝑔𝛾 systems at bremsstrahlung processes with critical temperature (𝑇𝑐 = 190 and 196) MeV with photons energy (1-10) GeV. The confinement and de-confineme
... Show More