In the current research, the work concentrated on studying the effect of curvature of solar parabolic trough solar collector on wind loading coefficients and dynamic response of solar collector. The response of collector to the aerodynamic loading was estimated numerically and experimentally. The curvature of most public parabolic trough solar collectors was investigated and compared. The dynamic response of solar collector due to wind loading was investigated by using numerical solution of fluid-structure interaction concept. The experimental work was done to verify the numerical results and shows good agreement with numerical results. The numerical results were obtained by using finite element software package (ANSYS 14). It was found that the change in collector curvature (focal length) lead to remarkable changes in wind loading coefficients (drag, lift, and moment), dynamic response (displacement) and natural frequencies but does not affect the first mode shape.
The city is a built-up urban space and multifunctional structures that ensure safety, health and the best shelter for humans. All its built structures had various urban roofs influenced by different climate circumstances. That creates peculiarities and changes within the urban local climate and an increase in the impact of urban heat islands (UHI) with wastage of energy. The research question is less information dealing with the renovation of existing urban roofs using color as a strategy to mitigate the impact of UHI. In order to achieve local urban sustainability; the research focused on solutions using different materials and treatments to reduce urban surface heating emissions. The results showed that the new and old technologies, produ
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show More