Laser drilling is capable of producing small, precisely positioned holes with high degree of reproductively. In this paper , IR millisecond Nd:YAG single pulsed laser was used to determine the effect of laser parameters on the drilled hole of the glass - fiber reinforced epoxy composite FR-4 sample of 2 mm in thickness . The type of laser source was GSI lumonics JK760TR Series laser 1.064μm system in a CNC cabin. The JK760TR series has a 0.3-50ms pulse length and a maximum repetition rate 500Hz with an average power of 600W. The investigation of single pulse laser drilling in this paper was based on theoretical and experimental solutions. In single pulse technique, the investigation included focal plane position fpp, pulse shape, laser peak power, and pulse duration. It was found that (-1) was the best fpp due to less taper for the drilled holes made by this level (Entrance hole =0.68, Exit hole = 0.27). To predict pulse shape effects; three types were : rectangular , rump-up and cool down, it were examined found that rectangular pulse was efficient more than the other types due to its ability to produce holes with less tapering as compared with others types. Also its found that all pulse shapes had the same effect on the materials microstructure . Laser peak power and pulse duration had the predominant affects on the hole dimensions and edge quality without any defect except hole tapering.
In this paper, tunable optical band-pass filters based on Polarization Maintaining Fiber –Mach Zehnder Interferometer presented. Tunability of the band-pass filter implemented by applying different mechanical forces N on the micro-cavities splicing regions (MCSRs). The micro-cavity formed by using three variable-lengths of single-mode polarization-maintaining fiber with (8, 16, 24) cm lengths, splice between two segments of (SMF-28) with (26, 13) cm lengths, using the fusion splicing technique. Ellipsoidal shape micro-cavities experimentally achieved parallel to the propagation axis having dimensions between (12-24) μm of width and (4-12) μm of length. A micro-cavity with width and length as high as 24 μm and 12 μ
... Show MoreThe subject of the Internet of Things is very important, especially at present, which is why it has attracted the attention of researchers and scientists due to its importance in human life. Through it, a person can do several things easily, accurately, and in an organized manner. The research addressed important topics, the most important of which are the concept of the Internet of Things, the history of its emergence and development, the reasons for its interest and importance, and its most prominent advantages and characteristics. The research sheds light on the structure of the Internet of Things, its structural components, and its most important components. The research dealt with the most important search engines in the Intern
... Show MoreThe study aims to design an electronic puppet educational theater by Camtasia studio and identify the effectiveness in learning some of the artistic gymnastics skills for first grade, the research curriculum is experimental by designing two equal groups, and the research sample first grade students are distributed among 4 grade, and by the pumpkin determines two divisions (15 from each) representing the experimental group and control group, the main experiment conducted for 8 weeks by two educational units per week after which the post-tests were conducted, SPSS was used to process the results, and it was found that the electronic puppet educational theater contributed by making the learning process enjoyable and interesting and meeting the
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreDifferent solvents (light naphtha, n-heptane, and n-hexane) are used to treat Iraqi Atmospheric oil residue by the deasphalting process. Oil residue from Al-Dura refinery with specific gravity 0.9705, API 14.9, and 0.5 wt. % sulfur content was used. Deasphalting oil (DAO) was examined on a laboratory scale by using solvents with different operation conditions (temperature, concentration of solvent, solvent to oil ratio, and duration time). This study investigates the effects of these parameters on asphaltene yield. The results show that an increase in temperature for all solvents increases the extraction of asphaltene yield. The higher reduction in asphaltene content is obtained with hexane solvent at operating conditions of (90 °C, 4/1
... Show MoreSome problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used t
... Show MoreIn this paper a decoder of binary BCH code is implemented using a PIC microcontroller for code length n=127 bits with multiple error correction capability, the results are presented for correcting errors up to 13 errors. The Berkelam-Massey decoding algorithm was chosen for its efficiency. The microcontroller PIC18f45k22 was chosen for the implementation and programmed using assembly language to achieve highest performance. This makes the BCH decoder implementable as a low cost module that can be used as a part of larger systems. The performance evaluation is presented in terms of total number of instructions and the bit rate.