In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint repulsive force and the off-sensors attractive force. These secondary forces and modified primary forces are merged to overcomethe drawbacks like dead ends and U shape traps. The proposed algorithm acquirs information of unknown environment by collecting the readings of five infrared sensors with detecting range of 0.8 m. The proposed algorithm is applied on two different environments also it is compared with another algorithm. The simulation and experimental results confirm that the proposed algorithm always converges to the desired target. In addition, the performance of algorithm is well and meets the requirements in terms of saved time and computational resources.
In this paper, we introduce new definitions of the - spaces namely the - spaces Here, and are natural numbers that are not necessarily equal, such that . The space refers to the n-dimensional Euclidean space, refers to the quaternions set and refers to the N-dimensional quaternionic space. Furthermore, we establish and prove some properties of their elements. These elements are quaternion-valued N-vector functions defined on , and the spaces have never been introduced in this way before.