Preferred Language
Articles
/
alkej-159
Simulation Study of Mass Transfer Coefficient in Slurry Bubble Column Reactor Using Neural Network
...Show More Authors

 

The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease with increasing solid concentration. From the experimental work 1575 data points for three systems, were collected and used to predicate  kLa. Using SPSS 17 software, predicting of overall volumetric mass-transfer coefficient (kLa) was carried out and an output of 0.05264 sum of square error was obtained for trained data and 0.01064 for test data.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 05 2016
Journal Name
Global Journal Of Engineering Science And Researches
EVALUATE THE RATE OF CONTAMINATION SOILS BY COPPER USING NEURAL NETWORK TECHNIQUE
...Show More Authors

The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .
...Show More Authors

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 14 2019
Journal Name
Al-khwarizmi Engineering Journal
Creeping Gait Analysis and Simulation of a Quadruped Robot
...Show More Authors

A quadruped (four-legged) robot locomotion has the potential ability for using in different applications such as walking over soft and rough terrains and to grantee the mobility and flexibility. In general, quadruped robots have three main periodic gaits:  creeping gait, running gait and galloping gait. The main problem of the quadruped robot during walking is the needing to be statically stable for slow gaits such as creeping gait. The statically stable walking as a condition depends on the stability margins that calculated particularly for this gait. In this paper, the creeping gait sequence analysis of each leg step during the swing and fixed phases has been carried out. The calculation of the minimum stability margins depends up

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network
...Show More Authors

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems using Convolutional Neural Network
...Show More Authors

Preview PDF
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Study the Axail Dispersion Model in Ion Exchange Column
...Show More Authors

A mathematical model is developed which predicates the performance of cylindrical ion exchange bed involving comparing of axial dispersion model for cation exchange column with different assumption, this model permits the performance to predicate the residence time within the bed with the variance, axial dispersion and Pecklet No. to indicated deviation from plug flow model.

      Two type of systems are chosen for positive ions first with divalent ions (Ca+2) to exchange with resin of Na+1form used as application in  water softener units and second with monovalent ions (Na+1) to exchange with resin of H+1 form used as application in deionize water units &n

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe
...Show More Authors

This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

View Publication
Scopus (1)
Scopus Clarivate Crossref