In the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at these parameters and comparing them with the randomly used once. The experimental and analytical results showed that the Taguchi method was successful in optimizing the parameters that give the highest properties and it can find the most influential parameter regardless of the material used. Also it showed that the volume fraction was the most influential parameter on the tensile and impact strength. The difference between these composites was in the properties values and that the Kevlar composites have higher tensile and impact strength.
This paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreFace recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
Abstract
This study highlights the importance of Iraq in the analysis of foreign trade and economic growth for the period (1980 - 2013) is an attempt to determine the equilibrium relationship long term and short term between these two variables were used ARDL model to explain the economic relationship between the two variables.
To achieve the objectives of the research has been the standard model estimate after testing the stability of exports X data series, and imports M, and GDP current prices, and exchange rate EXR, and verify the existence of a joint integration relationship between these variables.
In order to achieve the objectives of the research it
... Show MoreThe research discusses one of the most critical issues of corporate finance which is related to asset utilization efficiency. Researchers used internal growth rate as independent variable (Proxy of asset utilization efficiency) and sustainable growth rate-dependent variable (proxy of stockholders wealth). According to these two variables, researchers formulate major hypotheses (There is no significant effect of internal growth rate on sustainable growth rate), as well as two sub-hypotheses, examine the components of major variables. Sample of Iraqi industrial companies which listed in the Iraqi stock exchange selected to test and examine main hypotheses. Result of simple and multiple regressions explain there is a significant effect of i
... Show MoreAbstract
The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of
... Show MoreIntroduction:Serratia marcescens is a gram-negative pathogen of many species. Its pathogenicity and survival are linked to its capacity to build biofilms as well as its strong inherent resistance to antimicrobials and cleaning agents. Objectives: To analyse the impact of glyceryl trinitrate (GTN) on the gene expression of QS-related genes (rssB, rsmA,and pigP) of S. marcescens. Methodology: The broth microdilution technique estimated the bactericidal effectiveness of glyceryl trinitrate. The presence of rssB, rsmA,and pigP in S. marcescens isolates was detected using PCR. qRT-PCR was used to assess the effect of GTN on rssB, rsmA,and pigPgene expression. Results: The results demonstrated that GTN has no effect on S. marcesce
... Show More