In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with the (GA)-based PID control is illustrated to show the validity of the proposed control method for practical applications, such as scanning microscopy.
The software-defined network (SDN) is a new technology that separates the control plane from data plane for the network devices. One of the most significant issues in the video surveillance system is the link failure. When the path failure occurs, the monitoring center cannot receive the video from the cameras. In this paper, two methods are proposed to solve this problem. The first method uses the Dijkstra algorithm to re-find the path at the source node switch. The second method uses the Dijkstra algorithm to re-find the path at the ingress node switch (or failed link).
... Show MoreThis research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at
... Show MoreThe change in the size of the droplets during the pesticide application process could have a negative impact on the percentage of drift or the losses of pesticides to the environment. One of the factors that could affect the droplet size produced from a single nozzle is the internal design of the nozzle itself, in addition to the wear of the nozzle orifice as a result of the usage time. In this research, three types of nozzles with different internal designs were used (Turbo TeeJet (TT), Turbo TwinJet (TTj 6011003), and Drift Guard (DG 11003)). The nozzles were subjected to an accelerated wear test for one hundred hours, and different droplet size parameters (Dv 0.1, Dv 0.5, Dv 0.9),
In this research we present An idea of setting up same split plots experiments in many locations and many periods by Latin Square Design. This cases represents a modest contribution in area of design and analysis of experiments. we had written (theoretically) the general plans, the mathematical models for these experiments, and finding the derivations of EMS for each component (source) of sources of variation of the analysis of variance tables which uses for the statistical analysis for these expirements
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreAs a result of the increase in wireless applications, this led to a spectrum problem, which was often a significant restriction. However, a wide bandwidth (more than two-thirds of the available) remains wasted due to inappropriate usage. As a consequence, the quality of the service of the system was impacted. This problem was resolved by using cognitive radio that provides opportunistic sharing or utilization of the spectrum. This paper analyzes the performance of the cognitive radio spectrum sensing algorithm for the energy detector, which implemented by using a MATLAB Mfile version (2018b). The signal to noise ratio SNR vs. Pd probability of detection for OFDM and SNR vs. BER with CP cyclic prefix with energy dete
... Show More