This paper reports a numerical study of flow behaviors and natural convection heat transfer characteristics in an inclined open-ended square cavity filled with air. The cavity is formed by adiabatic top and bottom walls and partially heated vertical wall facing the opening. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. A computer program to solve mathematical model has been developed and written as a code for MATLAB software. Results in the form of streamlines, isotherms, and average Nusselt number, are obtained for a wide range of Rayleigh numbers 103-106 with Prandtl number 0.71 (air) , inclination angles measured from the horizontal direction 0º-60º , dimensionless lengths of the active part 0.4-1 ,and different locations of the thermally active part at the vertical wall. The Results show that heat transfer rate is high when the length of the active part is increased or the active part is located at middle of vertical wall. Further, the heat transfer rate is poor as inclination angle is increased.
An experimental and numerical study was carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition. The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra*=500 for numerical study and for annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to give the governing equation under assumptions that used Darcy law and Boussinesq’s approximation and then it was solved numerically using finite difference approximation. It was found that t
... Show MoreIn the present work, steady, laminar natural convection in nonrectangular enclosures is analyzed numerically with and without fin. Vertical walls insulated while horizontal walls maintained isothermal at different temperature and the fin was placed on horizontal surface. The length of fin was equal (B/L=0.22, 0.44 and 0.66) and thickness of fin was constant. Various parameters are studied: Rayleigh number (from 104 to 107 ), Prandtl number (0.7), number of fin change from (1-3) and aspect ratio (H/L= 0.15 to 0.5). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on program in Fortran 90 with Tec plot program. The finite difference method is used. Streamlines and isotherms are prese
... Show MoreAn experimental and numerical study has been carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition; The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra* =500 for numerical study, annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to write the governing equation under an assumptions used Darcy law and Boussinesq’s approximation and then solved numerically using finite difference approximation. It was found that the averag
... Show MoreIn this numerical study a detailed evaluation of the heat transfer characteristics and flow structure in a laminar and turbulent flow through a rectangular channel containing built-in of different type vortex generator has been a accomplished in a range of Reynolds number between 500 and 100,000.A modified version of ESCEAT code has been used to solve Navier-Stokes and energy equations. The purpose of this paper is to present numerical comparisons in terms of temperature, Nusselt number and flow patterns on several configurations of longitudinal vortex generator including new five cases. The structures of heat and flow were studied, using iso-contours of velocity components, vortices, temperature and Nusselt n
... Show MoreAgricultural lands have great importance in people's lives, and their exploitation has a great impact on strengthening the national economy. Therefore, countries have given great importance to this sector, and because of the importance of this sector, the state has given large areas of these lands to the farmers to invest in agriculture, and among these farmers are those who died and left behind children who took up crafts. Agriculture, for fear that these agricultural lands would be abandoned and turned into waste lands, a land system was introduced called (regular distribu- tion), which corresponds to (legitimate inheritance). Under this system, these lands were trans- ferred to the children of farmers who died so that the process of inve
... Show MoreThe solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i
... Show MoreAbstract
The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg
... Show MoreIn this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the int
... Show MoreBackground: Candida albicans is a prevalent commensal that can cause severe health problems in humans. One such condition that frequently returns after treatment is oral candidiasis. Aim: the goal of this research is to evaluate the efficiency of 940 nm as a fungicidal on the growth of Candida albicans in vitro. Material and Methods: In vitro samples (fungal swabs) were taken from the oral cavity of 75 patients suffering from oral thrush. Following the process of isolating and identifying Albicans. The samples are divided into four groups:(Group 1): Suspension of C. albicans was put in a solution of saline as a control group. (Group 2): Suspension of C. albicans that had been treated wit
... Show MoreIn this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective
... Show More