This paper presents the application of a framework of fast and efficient compressive sampling based on the concept of random sampling of sparse Audio signal. It provides four important features. (i) It is universal with a variety of sparse signals. (ii) The number of measurements required for exact reconstruction is nearly optimal and much less then the sampling frequency and below the Nyquist frequency. (iii) It has very low complexity and fast computation. (iv) It is developed on the provable mathematical model from which we are able to quantify trade-offs among streaming capability, computation/memory requirement and quality of reconstruction of the audio signal. Compressed sensing CS is an attractive compression scheme due to its universality and lack of complexity on the sensor side. In this paper a study of applying compressed sensing on audio signals was presented. The performance of different bases and its reconstruction are investigated, as well as exploring its performance. Simulations results are present to show the efficient reconstruction of sparse audio signal. The results shows that compressed sensing can dramatically reduce the number of samples below the Nyquist rate keeping with a good PSNR.
The microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show MoreIt is commonly known that Euler-Bernoulli’s thin beam theorem is not applicable whenever a nonlinear distribution of strain/stress occurs, such as in deep beams, or the stress distribution is discontinuous. In order to design the members experiencing such distorted stress regions, the Strut-and-Tie Model (STM) could be utilized. In this paper, experimental investigation of STM technique for three identical small-scale deep beams was conducted. The beams were simply supported and loaded statically with a concentrated load at the mid span of the beams. These deep beams had two symmetrical openings near the application point of loading. Both the deep beam, where the stress distribution cannot be assumed linear, and the ex
... Show MoreThe concepts of nonlinear mixed summable families and maps for the spaces that only non-void sets are developed. Several characterizations of the corresponding concepts are achieved and the proof for a general Pietsch Domination-type theorem is established. Furthermore, this work has presented plenty of composition and inclusion results between different classes of mappings in the abstract settings. Finally, a generalized notation of mixing maps and their characteristics are extended to a more general setting.
Abstract
One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.
In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in
... Show MoreThe linear instability and nonlinear stability analyses are performed for the model of bidispersive local thermal non-equilibrium flow. The effect of local thermal non-equilibrium on the onset of convection in a bidispersive porous medium of Darcy type is investigated. The temperatures in the macropores and micropores are allowed to be different. The effects of various interaction parameters on the stability of the system are discussed. In particular, the effects of the porosity modified conductivity ratio parameters, and , with the int
... Show MoreThis paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreIn this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.
In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.