This paper presents the application of a framework of fast and efficient compressive sampling based on the concept of random sampling of sparse Audio signal. It provides four important features. (i) It is universal with a variety of sparse signals. (ii) The number of measurements required for exact reconstruction is nearly optimal and much less then the sampling frequency and below the Nyquist frequency. (iii) It has very low complexity and fast computation. (iv) It is developed on the provable mathematical model from which we are able to quantify trade-offs among streaming capability, computation/memory requirement and quality of reconstruction of the audio signal. Compressed sensing CS is an attractive compression scheme due to its universality and lack of complexity on the sensor side. In this paper a study of applying compressed sensing on audio signals was presented. The performance of different bases and its reconstruction are investigated, as well as exploring its performance. Simulations results are present to show the efficient reconstruction of sparse audio signal. The results shows that compressed sensing can dramatically reduce the number of samples below the Nyquist rate keeping with a good PSNR.
In this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
This paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.
The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner, Taylor manner and block- by- block(2, 3, 5).
The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the
The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
This paper presents a numerical solution to the inverse problem consisting of recovering time-dependent thermal conductivity and heat source coefficients in the one-dimensional parabolic heat equation. This mathematical formulation ensures that the inverse problem has a unique solution. However, the problem is still ill-posed since small errors in the input data lead to a drastic amount of errors in the output coefficients. The finite difference method with the Crank-Nicolson scheme is adopted as a direct solver of the problem in a fixed domain. The inverse problem is solved sub
... Show MoreAbstract
This research deals will the declared production planning operation in the general company of planting oils, which have great role in production operations management who had built mathematical model for correct non-linear programming according to discounting operation during raw materials or half-made materials purchasing operation which concentration of six main products by company but discount included just three products of raw materials, and there were six months taken from the 1st half of 2014 as a planning period has been chosen . Simulated annealing algorithm application on non-linear model which been more difficulty than possible solution when imposed restric
... Show MoreLowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
ano