This paper presents the application of a framework of fast and efficient compressive sampling based on the concept of random sampling of sparse Audio signal. It provides four important features. (i) It is universal with a variety of sparse signals. (ii) The number of measurements required for exact reconstruction is nearly optimal and much less then the sampling frequency and below the Nyquist frequency. (iii) It has very low complexity and fast computation. (iv) It is developed on the provable mathematical model from which we are able to quantify trade-offs among streaming capability, computation/memory requirement and quality of reconstruction of the audio signal. Compressed sensing CS is an attractive compression scheme due to its universality and lack of complexity on the sensor side. In this paper a study of applying compressed sensing on audio signals was presented. The performance of different bases and its reconstruction are investigated, as well as exploring its performance. Simulations results are present to show the efficient reconstruction of sparse audio signal. The results shows that compressed sensing can dramatically reduce the number of samples below the Nyquist rate keeping with a good PSNR.
There has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish th
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreRecently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreSignal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreAnti-Neutrophil Cytoplasmic Antibodies (ANCA) are a heterogeneous group of autoantibodies with a broad spectrum of clinically associated diseases. The diagnostic value is established for Proteinase 3 (PR3)-ANCA as well as Myeloperoxidase (MPO)-ANCA. To estimate the frequency of anti-neutrophile cytoplasmic antibodies (ANCA) in sera from a group of Iraqi patients with some autoimmune diseases compared with a healthy control group. Serum samples were collected from one hundred patient, 47 males and 53 females; with age range of 16-70 years; 20 specimens from patients with systemic lupus erythematosus (SLE), 30 from patients with ulcerative colitis (UC), and 50 from patients with rheumatoid arthritis (RA). A group of 40 apparently healthy b
... Show Morethe behavior of the first-order black and gray solitons propagtedin optical fiber in the presence of frequency chirp is studied analytically and numerically results show that phase profile of black solitons changes abruptly
This research describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 – 2.75) GHz,Step size (1 MHz), Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc
The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD) , prescalar & reference divider in single chip. Therefore our system consists of a single chip contains (low phase noise PFD, charge pump, prescalar & reference divider), voltage controlled oscillator , loop filter & reference oscillator. The single chip
... Show MoreThe problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work tha
... Show More