Preferred Language
Articles
/
alkej-136
Empirical Equations for Analysis of Two-Way Reinforced Concrete Slabs
...Show More Authors

There are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.

In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.

The comparison proof that this simple proposed method gives good results and it can be used in analysis of two-way slabs instead of other methods.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Finite Element Analysis of Reinforced Concrete T-Beams with Multiple Web Openings under Impact Loading
...Show More Authors

In this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams With and Without Opening
...Show More Authors

This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Engineering
Finite Element Analysis of Reinforced Concrete T-Beams with Multiple Web Openings under Impact Loading
...Show More Authors

Publication Date
Tue Mar 01 2022
Journal Name
Structures
Behavior of reinforced concrete tapered beams
...Show More Authors

Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Effect of Petroleum Products on Steel Fiber Reinforced Concrete
...Show More Authors

This Investigation aims to study the effect of adding Steel fibers with different volume fractions Vf (o.5, 0.75, and 1% by volume of concrete) with aspect ratio 100 on mechanical properties of concrete, and also
finding the influence of petroleum products (Kerosene and Diesel) on mechanical properties of Steel Fiber Reinforced Concrete (SFRC).
The experimental work consists of two groups: group one consists of specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to continuous curing with water. Group two consists of
specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to kerosene and diesel after curing them in water for 28 days before exposure. The results of all te

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Modified Strut Effectiveness Factor for FRP-Reinforced Concrete Deep Beams
...Show More Authors

A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars
...Show More Authors

Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Deep Beams Strengthened with Carbon Fiber Reinforced Polymer Strips
...Show More Authors

This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Structures
The effect of ground motion characteristics on the fragility analysis of reinforced concrete frame buildings in Australia
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Residual strength and strengthening capacity of reinforced concrete columns subjected to fire exposure by numerical analysis
...Show More Authors
Abstract<p>This study is a numerical investigation of the performance of reinforced concrete (RC) columns after fire exposure. This study aims to investigate the effect of introducing lateral ties and using the RC jacket on improving post-fire behavior of these columns, the effect of the duration of the fire on ultimate load of columns. The analysis was performed through ABAQUS, a 3D – non-linear finite element program. 4 m tall lengthening square RC column with a cross- section of 0.4 m × 0.4 m was used as a test specimen. The RC column was reinforced by 4Ø28 mm longitudinal bars bonded by steel tie bars of Ø10 mm spaced at 400 mm. The firing temperature was increased to 60</p> ... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref