This paper studies the effects of stiffeners on shear lag in steel box girders with stiffened flanges. A three-dimensional linear finite element analysis using STAAD.Pro V8i program has been employed to evaluate and determine the actual top flange stress distribution and effective width in steel box girders. The steel plates of the flanges and webs have been modeled by four-node isoparametric shell elements, while the stiffeners have been modeled as beam elements. Different numbers (4, 8, and 15) for the steel stiffeners have been used in this study to establish their effects on the shear lag and longitudinal stresses in the flange. Using stiffeners reduced the magnitude of the top flange longitudinal stresses about 40%, but didn’t affect the shear lag.
The organizational integration forms a necessity according to McKinsey model, especially for service organizations. In the context of various service sector developments, importance adoption of compact mechanisms by these organizations to upgrade their services has increased and senior management must be more aware of environmental, competitive and developmental requirements. It gets more important when it shows in an organization seeking at excellence of making services within its policies and strategies. Subject organizational integration dimensions (strategy, structure, systems, style, staff, shared values, and skills) are effective components in directing behaviors of employees and organization. This motivated both researcher
... Show MoreOptical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreWe study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show More