Preferred Language
Articles
/
alkej-126
An Experimental Study on the Effect of Shape and Location of Vortex Generators Ahead of a Heat Exchanger
...Show More Authors

An experimental study is carried out on the effect of vortex generators (Circular and square) on the flow and heat transfer at variable locations at (X = 0.5, 1.5, 2.5 cm) ahead of a heat exchanger with Reynolds number ranging from 62000< Re < 125000 and heat flux from 3000 ≤ q ≤ 8000 W/m2 .

In the experimental investigation, an apparatus is set up to measure the velocity and temperatures around the heat exchanger.                     

The results show that there is an effect for using vortex generators on heat transfer. Also, heat transfer depends on the shape and location. The circular is found to be the best shape for enhancing heat transfer at location [Xm=0.5 cm] distance before heat exchanger is the best location for enhancing heat transfer. The square is the best shape for enhancing heat transfer at location [Xm=2.5 cm] distance before heat exchanger is the best location for enhancing heat transfer.

The results of flow over heat exchanger with vortex generators are compared with the flow over heat exchanger without vortex generators. Heat transfer around heat exchanger is enhanced (56%, 50%, 36%) at location            (X=0.5, 1.5, 2.5cm) respectively by using circular vortex generators without turbulator and heat transfer around heat exchanger is enhanced (39%, 42%, 51%) at location (X=0.5, 1.5, 2.5cm) respectively by using square shape vortex generators without turbulator.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL AND THEORETICAL STUDY OF TWO-PHASE HEAT PIPE
...Show More Authors

In this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis
...Show More Authors

This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations.

       The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop.

A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%). The percentage

... Show More
View Publication
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Entransy dissipation of Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis
...Show More Authors

Shell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.

 

View Publication Preview PDF
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
Numerical Investigation of Heat Transfer Enhancement of Double Pipe Heat Exchanger Using Metal Foam Fins
...Show More Authors

The influence of adding metal foam fins on the heat transfer characteristics of an air to water double pipe heat exchanger is numerically investigated. The hot fluid is water which flows in the inner cylinder whereas the cold fluid is air which circulates in the annular gap in parallel flow with water. Ten fins of metal foam (Porosity = 0.93), are added in the gap between the two cylinder, and distributed periodically with the axial distance. Finite volume method is used to solve the governing equations in porous and non-porous regions. The numerical investigations cover three values for Reynolds number (1000 ,1500, 2000), and Darcy number (1 x10-1, 1 x10-2, 1x10-3). The comparison betwee

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Forming Media on the Hydroforming Process for Copper Tube
...Show More Authors

To observe the effect of media of the internal pressure on the equivalent stress distribution in the tube, an experimental study is done by constructing a testing rig to apply the hydraulic pressure and three dies are manufactured with different bulging configurations (square, cosine, and conical). In the other part, ANSYS APDL is generated to analyze the bulging process with hydraulic and rubber (natural and industrial) media. It was found that when the media is a rubber, the stress is decreased about 9.068% in case of cosine die and 5.4439% in case of conical die and 2.8544% in case of square die. So, it can be concluded that the internal pressure in the rubber media is much better than in hydraulic media. Also, the force needed for fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Surface Roughness on Thermohydrodynamic Performance in Misaligned Journal Bearings
...Show More Authors

     In this work an approach has been developed to investigate the influence of surface roughness on thermohydrodynamic performance in aligned and misaligned journal bearings by considering an average flow model and deriving the shear flow factor for various roughness configurations, similar to the pressure flow factor. An average Reynolds equation for rough surfaces is defined in term of pressure and shear flow factors, which can be obtained by numerical flow simulation, though the use of measured or numerically generated rough surfaces. Reynolds, heat conduction and energy equations are solved simultaneously by using a suitable numerical technique (Finite Difference Method) to obtain the pressure and temperature di

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Micro and Nano Material on Critical Heat Flux (CHF) Enhancement
...Show More Authors

The Nano materials play a very important role in the heat transfer enhancement. An experimental investigation has been done to understand the behaviors of nano and micro materials on critical heat flux. Pool boiling experiments have used for several concentrations of nano and micro particles on a 0.4 mm diameter nickel chrome (Ni-Cr) wire heater which is heated electrically at atmospheric pressure. Zinc oxide(ZnO) and silica(SiO2) were used as a nano and micro fluids with concentrations (0.01,0.05,0.1,0.3,0.5,1 g/L), a marked enhancement in CHF have been shown in the results for nano and micro fluids for different concentrations compared to distilled water. The deposition of the nano particles on the heater surface was the rea

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Entransy Dissipation of Shell and Double Concentric Tubes Heat Exchanger
...Show More Authors

The concept of entransy dissipation was determined for new type of heat exchanger (shell and double concentric tubes heat exchanger). Three parameters, hot oil flow rate, temperature of inlet hot oil and pressure drop of system were investigated with this concept (entransy dissipation). The results showed that the value of entransy dissipation of oil and of system which represents the summation of entransy dissipation of both oil and water increased with increasing the flow rate of hot oil and these values were larger when cold water flow rate was doubled. Also they were increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, the pressure drops for hot oil in both shell side and inner tubes

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger
...Show More Authors

Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger). Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Final

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of the Thermal Diffusivity and Heat Capacity Concerning Some Duplex Stainless Steel
...Show More Authors

Abstract

In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam

... Show More
View Publication Preview PDF