Preferred Language
Articles
/
alkej-123
Design of Hybrid Neural Fuzzy Controller for Human Robotic Leg System
...Show More Authors

 In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and FPD-ID controllers.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Ant Colony Optimization Algorithm for Design of Distribution System with Practical Application
...Show More Authors

The Ant System Algorithm (ASA) is a member of the ant colony algorithms family in swarm intelligence methods (part of the Artificial Intelligence field), which is based on the behavior of ants seeking a path and a source of food in their colonies. The aim of This algorithm is to search for an optimal solution for Combinational Optimization Problems (COP) for which is extremely difficult to find solution using the classical methods like linear and non-linear programming methods. 

The Ant System Algorithm was used in the management of water resources field in Iraq, specifically for Haditha dam which is one of the most important dams in Iraq. The target is to find out an efficient management system for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Neuro-Self Tuning Adaptive Controller for Non-Linear Dynamical Systems
...Show More Authors

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Retrieving Encrypted Images Using Convolution Neural Network and Fully Homomorphic Encryption
...Show More Authors

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Sep 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Robust Computed Torque Control for Uncertain Robotic Manipulatorss
...Show More Authors

This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem.  The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Simulation Model of Wind Turbine Power Control System with Fuzzy Regulation by Mamdani and Larsen Algorithms
...Show More Authors

Abstract 

     The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using GABOR Filter And Different Self Organizing Maps Neural Networks
...Show More Authors

 

This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.

The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20

... Show More
View Publication Preview PDF