The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).
The numerical analysis was conducted to studying the influence of length to diameter ratio (L/D) on the behavior of the soil treated with sand columns treated with 8% sodium silicate for both floating and end bearing type by using finite element method (Plaxis 3D Foundation ) for isolated foundation of real dimensions. The analysis’s study indicate that in the floating type the best improvement ratio was achieved at (L/D=8) when using columns with a diameter of (0.5, 0.7), but when using columns with a diameter of 0.3 m, it was noticed that the bearing improvement ratio increases with increasing (L/d). While the results of the analysis for end bearing type show that the higher improvement ratio was achieved at (L/D=4) when using columns w
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreIn this study, the mobile phone traces concern an ephemeral event which represents important densities of people. This research aims to study city pulse and human mobility evolution that would be arise during specific event (Armada festival), by modelling and simulating human mobility of the observed region, depending on CDRs (Call Detail Records) data. The most pivot questions of this research are: Why human mobility studied? What are the human life patterns in the observed region inside Rouen city during Armada festival? How life patterns and individuals' mobility could be extracted for this region from mobile DB (CDRs)? The radius of gyration parameter has been applied to elaborate human life patterns with regards to (work, off) days for
... Show MoreThis study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show MoreCredit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreBack ground: Skin grafting is the most common form
of reconstructive surgery, and regeneration of
sensations in skin grafts is a complex process
influenced by many factors such as , the thickness of
the graft, the depth of the grafted bed, meshing of the
graft, the condition of the bed and the surrounding
area. So many studies performed on this subject, some
of them clinically based on subjective type of sensation
tests, and others histological to detect the presence of
nerve fibers in the grafted skin
Objectives: To detect return of sensations to split
thickness skin grafts by clinical methods.
Methods: From Oct. 1995 to Oct. 2010, a clinical
prospective study performed in Al wasity Hospital for