The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).
Trip generation is the first phase in the travel forecasting process. It involves the estimation of the
total number of trips entering or leaving a parcel of land per time period (usually on a daily basis);
as a function of the socioeconomic, locational, and land-use characteristics of the parcel.
The objective of this study is to develop statistical models to predict trips production volumes for a
proper target year. Non-motorized trips are considered in the modeling process. Traditional method
to forecast the trip generation volume according to trip rate, based on family type is proposed in
this study. Families are classified by three characteristics of population social class, income, and
number of vehicle ownersh
Sawdust has the ability to adsorb the dyestuff from aqueous solution. It may be useful low cost adsorbent for the treatment of effluents, discharged from textile industries. The effectiveness of sawdust has been tested for the removal of color from the wastewater samples containing two dyes namely Direct Blue (DB) and Vat Yellow (VY). Effect of various parameters such as agitation time, adsorbent dose and initial concentration of each dye has been investigated in the present study. The adsorption of dyes has been tested with various adsorption isotherm models. The Langmuir isotherms model is found to be the most suitable one for the dye adsorption using sawdust and the maximum adsorption capacity is 8.706 mg/g and 6.975 mg/g for DB and V
... Show MoreBackground: Polycystic ovary syndrome is among the leading causes of fertility-related problems and menstrual irregularities in women of reproductive age. The granulosa cells of the developing pre-antral and antral follicles produce inhibin B, which triggers chemical responses in the ovaries. Inhibin B is most often observed in the follicular phase when levels peak early and then decline over time Objectives: This study was designed to investigate the role of serum inhibin B and the Luteinizing Hormone / Follicle Stimulating Hormone ratio in differentiation between the different phenotypes of polycystic ovary syndrome as well as to define the predominant PCOS phenotype. Methods: This cross-sectional research was conducted in the
... Show MoreOil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff
... Show MoreThis work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show More