Preferred Language
Articles
/
alkej-115
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
SPEECH RECOGNITION OF ARABIC WORDS USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN
...Show More Authors

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Middle Eastern Simulation And Modelling Conference 2022, Mesm 2022,
MECHANICS OF COMPOSITE PLATE STRUCTURE REINFORCED WITH HYBRID NANO MATERIALS USING ARTIFICIAL NEURAL NETWORK
...Show More Authors

Scopus
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Fast prediction of power transfer stability index based on radial basis function neural network
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Peak to Average Power Ratio Reduction of OFDM Signals Using Clipping and Iterative Processing Methods
...Show More Authors

One of the serious problems in any wireless communication system using multi carrier modulation technique like Orthogonal Frequency Division Multiplexing (OFDM) is its Peak to Average Power Ratio (PAPR).It limits the transmission power due to the limitation of dynamic range of Analog to Digital Converter and Digital to Analog Converter (ADC/DAC) and power amplifiers at the transmitter, which in turn sets the limit over maximum achievable rate.

        This issue is especially important for mobile terminals to sustain longer battery life time. Therefore reducing PAPR can be regarded as an important issue to realize efficient and affordable mobile communication services.

   

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Application of Artificial Neural Network for Predicting Iron Concentration in the Location of Al-Wahda Water Treatment Plant in Baghdad City
...Show More Authors

Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies.  In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Reliability Analysis of Multibit Error Correcting Coding and Comparison to Hamming Product Code for On-Chip Interconnect
...Show More Authors

Error control schemes became a necessity in network-on-chip (NoC) to improve reliability as the on-chip interconnect errors increase with the continuous shrinking of geometry. Accordingly, many researchers are trying to present multi-bit error correction coding schemes that perform a high error correction capability with the simplest design possible to minimize area and power consumption. A recent work, Multi-bit Error Correcting Coding with Reduced Link Bandwidth (MECCRLB), showed a huge reduction in area and power consumption compared to a well-known scheme, namely, Hamming product code (HPC) with Type-II HARQ. Moreover, the authors showed that the proposed scheme can correct 11 random errors which is considered a high

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 30 2020
Journal Name
Cfd Letters
Numerical Analysis for Solar Panel Subjected with an External Force to Overcome Adhesive Force in Desert Areas
...Show More Authors

View Publication
Scopus (14)
Crossref (11)
Scopus Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Investigation of heat transfer phenomena and flow behavior around electronic chip
...Show More Authors

Computational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par

... Show More
View Publication Preview PDF