Preferred Language
Articles
/
alkej-105
Effect of Construction Joints on Performance of Reinforced Concrete Beams
...Show More Authors

Construction joints are stopping places in the process of placing concrete, and they are required because in many structures it is impractical to place concrete in one continuous operation. The amount of concrete that can be placed at one time is governed by the batching and mixing capacity and by the strength of the formwork. A good construction joint should provide adequate flexural and shear continuity through the interface.

In this study, the effect of location of construction joints on the performance of reinforced concrete structural elements is experimentally investigated.

Nineteen beam specimens with dimensions of 200×200×950 mm were tested. The variables investigated are the location of the construction joints (at midspan or at third point of the specimens), type of construction joints (vertical, inclined, and key construction joints), and presence of stirrups at these joints. The specimens were tested using 1000 kN computer controlled versatile electronic testing machine. The specimens were positioned in the machine so that the deflection at center and\or at the location of construction joint was measured at each load step.

The results of the experimental program indicated that the best location of the construction joint is at the point of minimum shear. It was found that the use of vertical construction joint has little effect on the overall behavior of beam specimens (the percentage of reduction in ultimate load capacity is in the range of 0% - 5%).

While inclined construction joints results in a noticeable reduction in strength of beams relative to the strength of beam without construction joint the percentage of reduction in ultimate load capacity is in range of 8% - 20%.The presence of stirrups at the construction joints is an important variable, which affect the type of failure and load carrying capacity. It is found that adding of stirrups across the joint results in an increase in capacity in the range of (7%- 15%) and a decrease in deflection in the range of (20%- 48%).

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 15 2019
Journal Name
Al-khwarizmi Engineering Journal
Studying the effect of Different wt % AL2O3 Nanoparticles of 2024Al Alloy / AL2O3 Composites on Mechanical Properties
...Show More Authors

 

The nanocompsite of alumina (Al2O3) produced a number of beneficial effects in alloys. There is increasing in resistance of materials to surface related failures , such as the mechanical properties , fatigue and stress corrosion cracking .The experimental results observed that the adding of reinforced  nanomaterials  type Al2O3  enhanced the   HB hardness, UTS, 0.2 YS and ductility of 2014 Al/Al2O3 nano composites . the analysis of experiments, indicated that The maximum enhancement was observed at 0.4 wt.% Al2O3. The ultimate improvement percentage were 15.78% HB hardness, 18.1% (UTS), 12.86% (

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Additives on The Performance of Hydrostatic Thrust Bearings
...Show More Authors

 

The paper is concerned with, the behavior of the hydrostatic thrust bearings lubricated with liquid-solid lubricants using Einstein viscosity formula, and taking into account the centrifugal force resulting from high speed.  Also studied is the effect of the bearing dimensions on the pressure, flow rate, load capacity, shear stress, power consumption and stiffness.

The theoretical results show an increase in load capacity by (8.3%) in the presence of solid graphite particles with concentration of (16%) by weight as compared with pure oil, with increasing shear stress.  .

In general the performance of hydrostatic thrust bearings improve for load carrying capacity, volume flow rate,

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 26 2021
Journal Name
International Journal Of Applied Mechanics And Engineering
Probabilistic Mesoscale Analysis of Concrete Beams Subjected to Flexure
...Show More Authors
Abstract<p>In this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening be</p> ... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Systematic Design of Short-Span Segmental Beams Reinforced by CFRP Plates
...Show More Authors

The main objective of this study is to introduce a systematic design procedure for short-span segmental beams following a sophisticated ACI 440.2R-17 design procedure. The general aspects of innovative short-span segmental beams are easy to fabricate, economical and rapidly placed in pre-specified positions. Short-span segmental beams fabricated from individual precast plain-concrete blocks and CFRP plates. Recently, experimental tests performed on short-span segmental beams, by the authors, investigated CFRP plate-bonding, CFRP plate cross-sectional area, the thickness of plate-bonding epoxy resin, surface-to-surface condition of concrete blocks, as well as, interface condition of the bonding surface. The experimental program comprises tes

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Restrained Edges Effect on the Dynamics of Thermoelastic Plates under Different End Conditions
...Show More Authors

Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported.   These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics   of a plate with different

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Walled Nano-Carbon on the Physical, Thermal and Mechanical Properties of Epoxy
...Show More Authors

The physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Punching Shear Behavior of Reinforced Concrete Slabs under Fire using Finite Elements
...Show More Authors

The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 07 2022
Journal Name
Construction Research Congress 2022
Impact of Green Construction on Safety Performance in the Built Environment
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Effect of Biopolymer Alginate on some properties of concrete
...Show More Authors

Alginate from Large brown seaweeds act as natural polymer has been investigated as polymer and has been added to concrete in different percentages ( 0% , 0.5% , 1% and 1.5% ) by the cement weight and the study show the effect of using alginate biopolymer admixtures on  some of the fresh properties of the concrete (slump &  the density  fresh) also in the hardened state (  Compressive strength , Splitting tensile strength  and Flexural strength ) at 28 days. The mix proportion was (1:2.26:2.26) (cement: sand: gravel) respectively and at constant w/c equal to 0.47. The results indicate that the use of alginate as a percent of the cement weight possess a positive effect on fresh properties of co

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load
...Show More Authors

Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer

... Show More
View Publication Preview PDF