The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by using MATLAB R2010a with color images contaminated by white Gaussian noise. Compared with stationary wavelet and wiener filter algorithms, the experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 3.5 dB PSNR improvement.
The electrocardiogram (ECG) is the recording of the electrical potential of the heart versus time. The analysis of ECG signals has been widely used in cardiac pathology to detect heart disease. The ECGs are non-stationary signals which are often contaminated by different types of noises from different sources. In this study, simulated noise models were proposed for the power-line interference (PLI), electromyogram (EMG) noise, base line wander (BW), white Gaussian noise (WGN) and composite noise. For suppressing noises and extracting the efficient morphology of an ECG signal, various processing techniques have been recently proposed. In this paper, wavelet transform (WT) is performed for noisy ECG signals. The graphical user interface (GUI)
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreIn this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
In this work a fragile watermarking scheme is presented. This scheme is applied to digital color images in spatial domain. The image is divided into blocks, and each block has its authentication mark embedded in it, we would be able to insure which parts of the image are authentic and which parts have been modified. This authentication carries out without need to exist the original image. The results show the quality of the watermarked image is remaining very good and the watermark survived some type of unintended modification such as familiar compression software like WINRAR and ZIP
An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show MoreIn this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e
... Show More