The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by using MATLAB R2010a with color images contaminated by white Gaussian noise. Compared with stationary wavelet and wiener filter algorithms, the experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 3.5 dB PSNR improvement.
The international financial accounting and reporting standards IFRS/IAS represent the set of rules and foundations that the economic entity must follow in the measurement, presentation, and disclosure of the elements of the financial statements, the implementation of adopting the international financial reporting standards contributes to improving the qualitative characteristics of accounting information, so the current research aims to explain the role of adopting the International Accounting Standard (IAS) in improving the qualitative characteristics as well as analyzing the impact of the adoption of IAS.1 in improving the qualitative characteristics of accounting information within the financi
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreThe virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreVaginal biopsies and smears were collected from ten adult local healthy goats. Routine histological methods were carried out on vaginal biopsies and then stained with PAS stain. The smears were stained with Methylene blue. All samples were inspected under light microscope. The present study found that many constituents of the wall of the vagina, which have an important functional role, were absent; among these were the vaginal glands, goblet cells, muscularis mucosa, and lymphatic nodules. On the other hand, vagina showed special compensatory histological mechanisms, namely, the deep epithelial folds, the well-developed germinated stratum basale, the apparent basement membrane, and the profuse defensive cells, such as neutrophils, m
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreOrthogonal Frequency Division Multiplexing (OFDM) is one of recent years multicarrier modulation used in order to combat the Inter Symbol Interference (ISI) introduced by frequency selective mobile radio channel. The circular extension of the data symbol, commonly referred to as cyclic prefix is one of the key elements in an OFDM transmission scheme. This paper study The influence of the cyclic prefix duration on the BER performance of an OFDM-VCPL (Orthogonal frequency division multiplexing - Variable Cyclic Prefix Length) system and the conventional OFDM system with frame 64-QAM modulation is evaluated by means of computer simulation in a multipath fading channel. The adaptation of CP is done with respect to the delay spread estimation
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show More