Preferred Language
Articles
/
alkej-102
Color Image Denoising Using Stationary Wavelet Transform and Adaptive Wiener Filter
...Show More Authors

The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing.  Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds.  This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by using MATLAB R2010a with color images contaminated by white Gaussian noise. Compared with stationary wavelet and wiener filter algorithms, the experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 3.5 dB PSNR improvement.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Achievement of Product Quality by Using Organizational Agility Case Study In Numan Public Company
...Show More Authors

Helps to use the mechanics of organizational agility in improving product quality by reducing waste or reduce it by removing activities that do not add value, which is the main reason for inefficiency and low productivity and increase costs, so the difficulty of changing administrative decisions to cope with internal and external changes to keep up with market trends renewable are the basic issue that research seeks to be addressed through the adoption of mechanisms of organizational agility, which will be reflected in bottom line in a positive way in improving the quality of products, and thus lies Applied important to look at the light of the results achieved and in which they can know the nature of the relationship between the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Robust Adaptive Sliding Mode Controller for a Nonholonomic Mobile Platform
...Show More Authors

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Analyzing current and future direction of non-oil primary balance: Case Study of Iraq Using Exponential Smoothing model
...Show More Authors

In recent years, non-oil primary balance indicator has been given considerable financial important in rentier state. It highly depends on this indicator to afford a clear and proper picture of public finance situation in term of appropriate and sustainability in these countries, due to it excludes the effect of oil- rental from compound of financial accounts which provide sufficient information to economic policy makers of how economy is able to create potential added value and then changes by eliminating one sided shades of economy. In Iraq, since, 2004, the deficit in value of this indicator has increased, due to almost complete dependence on the revenues of the oil to finance the budget and the obvious decline of the non-oil s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Lossless and Lossy Polynomial Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Lossless and Lossy Polynomial Image Compression
...Show More Authors

Crossref (1)
Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Adaptive Smoothing Technique for Remotely Sensed Images Enhancement
...Show More Authors

Spatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.

View Publication Preview PDF
Publication Date
Mon Sep 01 2008
Journal Name
Al-khwarizmi Engineering Journal
New Adaptive Data Transmission Scheme Over HF Radio
...Show More Authors

Acceptable Bit Error rate can be maintained by adapting some of the design parameters such as modulation, symbol rate, constellation size, and transmit power according to the channel state.

An estimate of HF propagation effects can be used to design an adaptive data transmission system over HF link. The proposed system combines the well known Automatic Link Establishment (ALE) together with variable rate transmission system. The standard ALE is modified to suite the required goal of selecting the best carrier frequency (channel) for a given transmission. This is based on measuring SINAD (Signal plus Noise plus Distortion to Noise plus Distortion), RSL (Received Signal Level), multipath phase distortion and BER (Bit Error Rate) fo

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification
...Show More Authors

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
View Publication Preview PDF
Crossref