The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by using MATLAB R2010a with color images contaminated by white Gaussian noise. Compared with stationary wavelet and wiener filter algorithms, the experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 3.5 dB PSNR improvement.
Fingerprint recognition is one among oldest procedures of identification. An important step in automatic fingerprint matching is to mechanically and dependably extract features. The quality of the input fingerprint image has a major impact on the performance of a feature extraction algorithm. The target of this paper is to present a fingerprint recognition technique that utilizes local features for fingerprint representation and matching. The adopted local features have determined: (i) the energy of Haar wavelet subbands, (ii) the normalized of Haar wavelet subbands. Experiments have been made on three completely different sets of features which are used when partitioning the fingerprint into overlapped blocks. Experiments are conducted on
... Show MoreMore than 95% of the industrial controllers in use today are PID or modified PID controllers. However, the PID is manually tuning to be responsive so that the Process Variable is rapidly and steady moved to track the set point with minimize overshoot and stable output. The paper presents generic teal-time PID controller architecture. The developed architecture is based on the adaption of each of the three controller parameters (PID) to be self- learning using individual least mean square algorithm (LMS). The adaptive PID is verified and compared with the classical PID. The rapid realization of the adaptive PID architecture allows the readily fabrication into a hardware version either ASIC or reconfigurable.
The objective of this work is to investigate the performance of a conventional three phase induction motor supplied by unbalanced voltages. An effort to study the motor steady state performance under this disturbance is introduced. Using per phase equivalent circuit analysis with the concept of symmetrical components approach, the steady state performance is theoretically calculated. Also, a model for the induction motor with the MATLAB/Simulink SPS tools has been implemented and steady state results were obtained. Both results are compared and show good correlation as well. The simulation model is introduced to support and enhance electrical engineers with a complete understanding for the steady state performance of a fully loaded induc
... Show MoreThis research aims to investigate the color distribution of a huge sample of 613654 galaxies from the Sloan Digital Sky Survey (SDSS). Those galaxies are at a redshift of 0.001 - 0.5 and have magnitudes of g = 17 - 20. Five subsamples of galaxies at redshifts of (0.001 - 0.1), (0.1 - 0.2), (0.2 - 0.3), (0.3 - 0.4) and (0.4 - 0.5) have been extracted from the main sample. The color distributions (u-g), (g-r) and (u-r) have been produced and analysed using a Matlab code for the main sample as well as all five subsamples. Then a bimodal Gaussian fit to color distributions of data that have been carried out using minimum chi-square in Microsoft Office Excel. The results showed that the color distributions of the main sample and
... Show MoreThe aim of this research is to compare traditional and modern methods to obtain the optimal solution using dynamic programming and intelligent algorithms to solve the problems of project management.
It shows the possible ways in which these problems can be addressed, drawing on a schedule of interrelated and sequential activities And clarifies the relationships between the activities to determine the beginning and end of each activity and determine the duration and cost of the total project and estimate the times used by each activity and determine the objectives sought by the project through planning, implementation and monitoring to maintain the budget assessed
... Show MoreThis work presents plants recognition system with rotation invariant based on plant leaf. Wavelet energy features are extracted for sub-images (blocks) beside three of leaf shape features: [area, perimeter, circularity ratio]. (8) species of leaves are used in different size and color, (15) samples for each leaf are used. Leaves images are rotated at angles: 90˚, 180˚, 270˚(counterclockwise,clockwise). Euclidean distance is used, the recognition rate was 98.2% with/without rotation.
In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show MoreFuture wireless communication systems must be able to accommodate a large number of users and simultaneously to provide the high data rates at the required quality of service. In this paper a method is proposed to perform the N-Discrete Hartley Transform (N-DHT) mapper, which are equivalent to 4-Quadrature Amplitude Modulation (QAM), 16-QAM, 64-QAM, 256-QAM, … etc. in spectral efficiency. The N-DHT mapper is chosen in the Multi Carrier Code Division Multiple Access (MC-CDMA) structure to serve as a data mapper instead of the conventional data mapping techniques like QPSK and QAM schemes. The proposed system is simulated using MATLAB and compared with conventional MC-CDMA for Additive White Gaussian Noise, flat, and multi-path selective fa
... Show Morethe research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
This research involves design and simulation of GaussianFSK transmitter in UHF band using direct modulation of ΣΔ fractional-N synthesizer with the following specifications:
Frequency range (869.9– 900.4) MHz, data rate 150kbps, channel spacing (500 kHz), Switching time 1 µs, & phase noise @10 kHz = -85dBc.
New circuit techniques have been sought to allow increased integration of radio transmitters and receivers, along with new radio architectures that take advantage of such techniques. Characteristics such as low power operation, small size, and low cost have become the dominant design criteria by which these systems are judged.
A direct modulation by ΣΔ fractional-N synthesizer is proposed
... Show More