Preferred Language
Articles
/
ahe1eo0BVTCNdQwChBW4
COVID-19Disease Diagnosis using Artificial Intelligence based on Gene Expression: A Review
...Show More Authors

Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref (1)
Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Pakistan Journal Of Life And Social Sciences (pjlss)
Antibacterial and Antibiofilm Activity of Phenolic Compounds Extracted From Camellia Sinensis And Evaluate The Effect On The Gene Expression (Clfa) In Staphylococcus Aureus
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Advanced Pharmaceutical Technology & Research
Exploring the modulation of MLH1 and MSH2 gene expression in hesperetin-treated breast cancer cells (BT-474)
...Show More Authors
A<sc>BSTRACT</sc> <p>The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC<sub>50</sub>) of HSP in BT-</p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 04 2023
Journal Name
Iraqi Journal Of Biotechnology,
Gene Expression of Adenosine Deaminase Genes 1 and 2 in Female Iraqi Patients with Autoimmune Thyroid Disease
...Show More Authors

The current study was carried out to investigate the correlation of gene expressions of ADA1 and ADA2 genes with the development of autoimmune thyroid disease (AITD) in a sample of Iraqi females. One hundred patients with AITD and 80 controls were included. Quantitative real time polymerase chain reaction (qRT–PCR) was utilized for investigation of ADA1 and ADA2 gene expression among patients and controls. The correlation of age and body mass index (BMI) with AITD occurrence comparing with controls was studied. Based on the results of this study, there is high expression level of ADA1 and ADA2 genes in patients compared with healthy controls; also, the gene expression fold (2-ΔΔCT) of ADA1 and ADA2 among AITD patients was recorded and a

... Show More
Preview PDF
Publication Date
Tue Feb 24 2015
Journal Name
Robotica
Multi-level control of zero-moment point-based humanoid biped robots: a review
...Show More Authors
SUMMARY<p>Researchers dream of developing autonomous humanoid robots which behave/walk like a human being. Biped robots, although complex, have the greatest potential for use in human-centred environments such as the home or office. Studying biped robots is also important for understanding human locomotion and improving control strategies for prosthetic and orthotic limbs. Control systems of humans walking in cluttered environments are complex, however, and may involve multiple local controllers and commands from the cerebellum. Although biped robots have been of interest over the last four decades, no unified stability/balance criterion adopted for stabilization of miscellaneous walking/running modes of biped </p> ... Show More
View Publication
Scopus (42)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Sustainable Engineering And Innovation
A review of enhanced image techniques using chaos encryption
...Show More Authors

Secured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security.

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Fractal Image Compression Using Block Indexing Technique: A Review
...Show More Authors

Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima

... Show More
Preview PDF
Crossref (1)
Crossref