Preferred Language
Articles
/
ahd4apIBVTCNdQwCPK8Y
Assessing the accuracy of 'crowdsourced' data and its integration with official spatial data sets
...Show More Authors

Scopus
Publication Date
Sun Jan 01 2017
Journal Name
Iraqi Journal Of Science
Strong Triple Data Encryption Standard Algorithm using Nth Degree Truncated Polynomial Ring Unit
...Show More Authors

Cryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms to

... Show More
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Contemporary Challenges for Cloud Computing Data Governance in Information Centers: An analytical study
...Show More Authors

Purpose – The Cloud computing (CC) and its services have enabled the information centers of organizations to adapt their informatic and technological infrastructure and making it more appropriate to develop flexible information systems in the light of responding to the informational and knowledge needs of their users. In this context, cloud-data governance has become more complex and dynamic, requiring an in-depth understanding of the data management strategy at these centers in terms of: organizational structure and regulations, people, technology, process, roles and responsibilities. Therefore, our paper discusses these dimensions as challenges that facing information centers in according to their data governance and the impa

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
A Novel Technique for Secure Data Cryptosystem Based on Chaotic Key Image Generation
...Show More Authors

The advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Feb 06 2013
Journal Name
Eng. & Tech. Journal
A proposal to detect computer worms (malicious codes) using data mining classification algorithms
...Show More Authors

Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete

... Show More
Publication Date
Mon May 15 2017
Journal Name
Journal Of Theoretical And Applied Information Technology
Anomaly detection in text data that represented as a graph using dbscan algorithm
...Show More Authors

Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
A Modified 2D-Checksum Error Detecting Method for Data Transmission in Noisy Media
...Show More Authors

In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Fri Nov 29 2024
Journal Name
The Iraqi Geological Journal
Data Driven Approach for Predicting Pore Pressure of Oil and Gas Wells, Case Study of Iraq Southern Oilfields
...Show More Authors

Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables

... Show More
View Publication
Scopus Crossref