Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in a variety of applied sciences and engineering fields
Public relations are amongst the social sciences that rely on scientific methods in achieving new knowledge or resolving existing problems by means of its scientific researches that are often applied and require a classification in terms of their results’ analysis. It also requires subtle statistical processes whether in constructing their material or in analyzing and interpreting their results.
This research seeks to identify the relation between public relations and statistics, and the significance a researcher or practitioner in the domain of public relations should assign to statistics being one of the important criteria in identifying the accuracy and object
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
The process of identifying the region is not an easy process when compared with other operations within the attribute or similarity. It is also not difficult if the process of identifying the region is based on the standard and standard indicators in its calculation. The latter requires the availability of numerical and relative data for the data of each case Any indicator or measure is included in the legal process
The alternating direction implicit method (ADI) is a common classical numerical method that was first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI algorithm with some modifications. A numerical example was provided to support the theoretical results in the research.
The video steganography is a technique to hide information inside video file.Whereas video Steganography is a very important task in real life where the users want to keep data, so the steganography process used for the secure data transmission from the sender to receiver through the internet. Least significant bit (LSB) insertion technique operates on LSB bit of the media file to hide the information bit. In this paper steganography technique used to hide the information inside compressed video as development of a standard method in order to benefit from the advantages of the compression process, which added to the video, these features are reduce storage size of video, and reduce bandwidth to transfer data in faster way with save time
... Show MoreIn this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.
The main objective of this paper is to calculate the perturbations of tide effect on LEO's satellites . In order to achieve this goal, the changes in the orbital elements which include the semi major axis (a) eccentricity (e) inclination , right ascension of ascending nodes ( ), and fifth element argument of perigee ( ) must be employed. In the absence of perturbations, these element remain constant. The results show that the effect of tidal perturbation on the orbital elements depends on the inclination of the satellite orbit. The variation in the ratio decreases with increasing the inclination of satellite, while it increases with increasing the time.