The silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low and almost constant from 102 Hz to 104 Hz, has a slight increase after 104 Hz, and obtain relaxation peaks approximately between 105 and 106 Hz. A sharp increase in dielectric constant and dissipation factors is observed in epoxy (Ep)/CF composites with 30 vol.% of SiC. The increase in electrical conductivity of composites may result from the increased chain ordering by annealing effect. The electrical conductivities of the Ep/CF composites are decreasing with the increasing volume fraction of SiC. It is attributed to the introduction of insulating SiC. The glass transition temperature ( T g) of the Ep/CF-30 vol.% SiC composite was 352 C, which was higher than other composites. The decomposition temperature at 5% weight loss, decomposition temperature at 10% weight loss, and maximum decomposition temperature of the Ep/CF-30 vol.% SiC composite were about 389.5°C, 410.7°C, and 591°C, respectively, and were higher than pure epoxy and other composites. A higher thermal conductivity of 1.86 W (m K)−1 could be achieved with 30 vol.% SiC/CF hybrid fillers, which is about nine times higher than that of native epoxy resin of 0.202 W (m.K)−1.
In this study, high quality ZnO/Ag-NPs thin transparent and conductive film coatings were fabricated
A plastic tubes used as absorber of active flat plate solar collector (FPSC) for heating water were studied numerically and experimentally. The set-up is located in Babylon (republic of Iraq) 43.80 East longitude and 32.30 North latitude with titled of 450 toward the south direction. The study involved three dimensions mathematical model for flat coil plastic absorber which solved by FLUENT-ANSYS-R.18 program. Experiments were conducted at outdoor conditions for clear days on January and February 2018 with various water volume flow rates namely (500, 750, 1000, 1250, and 1500 Liter per hour LPH) on each month for Reynolds number range of (1 x 104 to 5 x 104) th
... Show MoreDensity Functional Theory (DFT) calculations were carried out to study the thermal cracking for acenaphthylene molecule to estimate the bond energies for breaking C8b-C5a , C5a-C5 , C5-C4 , and C5-H5 bonds as well as the activation energies. It was found that for C8b-C5a , C5-C4 , and C5-H5 reactions it is often possible to identify one pathway for bond breakage through the singlet or triplet states. The atomic charges , dipole moment and nuclear – nuclear repulsion energy supported the breakage bond .Also, it was found that the activation energy value for C5-H5 bond breakage is lower than that required for C8b-C5a , C5a-C5 , C5-C4 bonds which refer to C5-H5 bond in acenaphthylene molecule are weaker than C8b-C5a , C5a-C5 , C5-C
... Show MoreAim of the research is the study of improving the performance of the thermal station south Baghdad and the main reasons for reduced its efficiency. South Baghdad power planet comprises (6) steam turbine units and (18) gas turbine units .The gas turbine units are composed of two groups: the first group is made up of gas units (1,2), each of capacity (123) MW. The design efficiency of gas turbine units is 32%. The actual efficiency data of steam units is 18.3% instead of 45% which is the design efficiency. The main reason for efficiency reduction of gas units is the rejected thermal energy with the exhaust gases to atmosphere, that are (450-510) ℃.The bad type of fuel used (heavy) fuel. Another reason for the low efficiency and has a neg
... Show MoreThis work deals with thermal cracking of slack wax produced as a byproduct from solvent dewaxing process of medium lubricating oil fraction in AL-Dura refinery. The thermal cracking process was carried out at a temperature ranges 480-540 ºC and atmospheric pressure. The liquid hourly space velocity (LHSV) for thermal cracking was varied between 1.0-2.5 . It was found that the conversion increased (61 - 83) with the increasing of reaction temperature (480 - 540) and decreased (83 - 63) with the increasing of liquid hourly space velocity (1.0 - 2.5).
The maximum gasoline yield obtained by thermal cracking process (48.52 wt. % of feed) was obtained at 500 ºC and liquid hour space velocity 1 . The obtaining liquid product at the best op
In this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.
Pyrolysis of virgin polyethylene plastics was studied in order to produce hydrocarbon liquid fuel. The pyrolysis process carried out for low and high-density polyethylene plastics in open system batch reactor in temperature range of 370 to 450°C.
Thermo-gravimetric analysis of the virgin plastics showed that the degradation ranges were between 326 and 495 °C. The results showed that the optimum temperature range of pyrolysis of polyethylene plastics that gives highest liquid yield (with specific gravity between 0.7844 and 0.7865) was 390 to 410 °C with reaction time of about 35 minutes. Fourier Transform Infrared spectroscopy gave a quite evidence that the produced hydrocarbon liquid fuel consisted ma
... Show MoreBackground: This in vitro study measure and compare the effect of light curing tip distance on the depth of cure by measuring vickers microhardness value on two recently launched bulk fill resin based composites Tetric EvoCeram Bulk Fill and Surefil SDR Flow with 4 mm thickness in comparison to Filtek Z250 Universal Restorative with 2 mm thickness. In addition, measure and compare the bottom to top microhardness ratio with different light curing tip distances. Materials and Method: One hundred fifty composite specimens were obtained from two cylindrical plastic molds the first one for bulk fill composites (Tetric EvoCeram Bulk Fill and Surefil SDR Flow) with 4 mm diameter and 4 mm depth, the second one for Filtek Z250 Universal Restorative
... Show More