The silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low and almost constant from 102 Hz to 104 Hz, has a slight increase after 104 Hz, and obtain relaxation peaks approximately between 105 and 106 Hz. A sharp increase in dielectric constant and dissipation factors is observed in epoxy (Ep)/CF composites with 30 vol.% of SiC. The increase in electrical conductivity of composites may result from the increased chain ordering by annealing effect. The electrical conductivities of the Ep/CF composites are decreasing with the increasing volume fraction of SiC. It is attributed to the introduction of insulating SiC. The glass transition temperature ( T g) of the Ep/CF-30 vol.% SiC composite was 352 C, which was higher than other composites. The decomposition temperature at 5% weight loss, decomposition temperature at 10% weight loss, and maximum decomposition temperature of the Ep/CF-30 vol.% SiC composite were about 389.5°C, 410.7°C, and 591°C, respectively, and were higher than pure epoxy and other composites. A higher thermal conductivity of 1.86 W (m K)−1 could be achieved with 30 vol.% SiC/CF hybrid fillers, which is about nine times higher than that of native epoxy resin of 0.202 W (m.K)−1.
The purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them.
Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system.
This work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).
A reinforced concrete frame is referred as "RIGID FRAMES". However, researches indicate that the Beam-Column joint (BCJ) is definitely not rigid. In addition, extensive research shows that failure may occur at the joint instead of in the beam or the column. Joint failure is known to be a catastrophic type which is difficult to repair.
This study was carried out to investigate the effect of hoops and column axial load on the shear strength of high-strength fiber reinforced Beam-Column Joints by using a numerical model based on finite element method using computer program ANSYS (Version 11.0). The variables are: diameter of hoops and magnitude of column axial load.
The theoretical results obtained from ANSYS program are in a good a
Abstract
The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP) and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8) experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resul
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
This research aims to study the effect of heat on the efficiency of solar cells of neutrons ranging from card to these cells in the case of dark and light before and after irradiation using the neutron source as well as electrical properties have been studied
Some mechanical and thermal properties of mullite samples prepared by mixing different phases of alumina and silica powders have been studied according to ASTM methods the cold crushing strength of the sintcred bodies.With different porosity, at room temperature was in the range(18-54)Mpa
The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show MoreWater is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul
... Show More