Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The experiment showed the functional working principle of the MR valve. In conclusion, the MR valve proved to be effective in controlling the direction and speed of hydraulic actuators proportionally. The proposed new design has the potential to reduce the complexity of directional control valves in the future.
The aim of this paper is to study the asymptotically stable solution of nonlinear single and multi fractional differential-algebraic control systems, involving feedback control inputs, by an effective approach that depends on necessary and sufficient conditions.
The hydraulic conditions of a flow previously proved to be changed when placing large-scale geometric roughness elements on the bed of an open channel. These elements impose more resistance to the flow. The geometry of the roughness elements, the numbers used, and the configuration are parameters that can affect the hydraulic flow characteristics. The target is to use inclined block elements to control the salt wedge propagation pointed in most estuaries to prevent its negative effects. The Computational Fluid Dynamics CFD Software was used to simulate the two-phase flow in an estuary model. In this model, the used block elements are 2 cm by 3 cm cross-sections with an inclined face in the flow direction, with a length
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreThe virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
Abstract. Shatt Al-Arab River was the most important tide river in Iraq, it suffered from neglect and lack of maintenance in the past decades. The river embankment is constantly exposed to erosion processes due to several factors, one of the most important of these factors is the movement of water currents due to the tidal energy coming from the Arabian Gulf. In this study, one dimension unsteady-state model was implemented to study river flood capacity simulation by using HEC-RAS (5.0.7) software in Shatt Al Arab River and its tributaries. The data included flow rate, water level records were collected daily from 2018 to 2020 at different stations along the mentioned river and its feeders, additionally, the considered flood discharge data
... Show MoreIn this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreThis research includes the using of statistical to improve the quality of can plastics which is produced at the state company for Vegetable oils (Almaamon factory ) by using the percentage defective control chart ( p-chart ) of a fixed sample. A sample of size (450) cans daily for (30) days was selected to determine the rejected product . Operations research with a (win QSB ) package for ( p-chart ) was used to determine test quality level required for product specification to justify that the process that is statistically controlled.
The results show high degree of accuracy by using the program and the mathematical operations (primary and secondary ) which used to draw the control limits charts and to reject the statistically uncontr
The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show MoreThe accounting system of government is considered an important tool to follow up the financial transactions that reflect the activities of governmental units and by which the useful information for estimating governmental annual revenues and expenditures are provided through the state public budget because it is an information system that provides detailed past performance, as well as measures the efficiency of the governmental agencies performance in implementing the budget, and the of success governmental units is measured through the type of services and programs offered, their size and the possibility of achieving the objectives assigned to them. The medical evacuation program is one of the medical and curative health services provid
... Show More