Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The experiment showed the functional working principle of the MR valve. In conclusion, the MR valve proved to be effective in controlling the direction and speed of hydraulic actuators proportionally. The proposed new design has the potential to reduce the complexity of directional control valves in the future.
This study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t
... Show More