Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75.00%, and 30.20%, respectively. Two species of bacteria and one type of fungus were examined at three different use concentrations if possible of MnO2 nanoparticles. Antibiotics like Amoxicillin and Metronidazole were used as a control group to see how the findings stacked up.
In this work ,medical zinc oxide was produced from zinc scraps instead of traditional method which used for medical applications such as skin diseases, Iraq is importing around 50 ton/year for samarra plant the producted powder has apartical size less than 5 micron and the purity was more than 99.98%,also apilot plant of yield capacitiy 15 kg/8hours wsa designed and manufactured .
The deposition process and investigation of the physical properties of tungsten trioxide (WO3) thin films before and after gamma irradiation are presented in this paper. The WO3 thin films were deposited, using the pulse laser deposition technique, on glass substrates at laser energies of 600mJ and 800mJ. After deposition, the samples were gamma irradiated with Co60. The structural and optical properties of polycrystalline WO3 thin films are presented and discussed before and after 5kGy gamma irradiation at the two laser energies. X-ray diffraction spectra revealed that all the films consisted of WO3 crystallized in the triclinic form; the dislocation density and lattice strain increased with the absorbed dosage of gamma
... Show MoreThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
The effectiveness inhibitory to extract alcohol for the leaf and flower to plant sage Salvia pratensis each of Staphylococcus aureus, streptococcus epidermidis, Salmonella typhi, Pseudomonas aeroginosa, Escherichia coli, Aspergillus niger and Candida albicans whom had any inhibition to aqueous extracts of the parts itself species bacterial and fungal. The study also demonstrated that the extract of plant containing compounds chemical such as tannins, Alkaloids, Flavonoieds, and saponins, which owns effectiveness of medical. The MIC, MBC and inhibition zones for crud extract were determinated for microbial agents.
The need to overcome the failure of orthodontic micro-implants which might reach to 30% has led to the development of different methods, one of which is nanoparticle deposition.
To evaluate the anti-microbial efficiency of TiO2 and ZnO nanoparticles (NP) when used as a coating for orthodontic micro-implants.
Thirty titanium alloy micro-implants were used in the presented study. They were divided into three
In this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show More