The debate on the methodology of media and communication research is no longer subject to the logic of the contradiction between the quantitative and the qualitative approach, nor the logic of the comparison between them. The nature of the topics presented for research, the problems they raise, the goals to be achieved from the research, and the epistemological positioning of researchers are among the critical factors that dictate the appropriate approach or methodological approaches to conduct their research. This positioning means the implicit philosophical principles upon which any researcher relies and which determine the path he/ she takes to produce scientifically approved knowledge. The method of the researcher's access to the phenomenon considered and the aim of its study are what controls his/ her epistemological position.
Therefore, it can be said that we reduce the debate concerning the methodology of scientific research if we limit the difference between the quantitative and qualitative approach to saying that the first depends on numbers and the second depends on words. The difference between them is philosophical and epistemological.
If we are satisfied that the qualitative research allows for a comprehensive understanding of phenomena and delves deep into the analysis of social data; and that quantitative research is a form of scrutiny of the surface of social facts, then defining the specificity of qualitative research requires approaching more of its philosophical and epistemological framework
The aim of the current research is to reveal the effect of using brain-based learning theory strategies on the achievement of Art Education students in the subject of Teaching Methods. The experimental design with two equal experimental and control groups was used. The experimental design with two independent and equal groups was used, and the total of the research sample was (60) male and female students, (30) male and female students represented the experimental group, and (30) male and female students represented the control group. The researcher prepared the research tool represented by the cognitive achievement test consisting of (20) questions, and it was characterized by honesty and reliability, and the experiment lasted (6) weeks
... Show MoreAmong the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreWe present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show MoreThe nuclear matter density distributions, elastic electron scattering charge formfactors and root-mean square (rms) proton, charge, neutron and matter radii arestudied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. Thelocal scale transformation (LST) are used to improve the performance radial wavefunction of harmonic-oscillator wave function in order to generate the long tailbehavior appeared in matter density distribution at high . A good agreement resultsare obtained for aforementioned quantities in the used model.
This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C. As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power
... Show MoreIn this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
(3) (PDF) Theoretical investigation of charge transfer at N3 sensitized molecule dye contact with TiO2 and ZnO semiconductor. Available from: https://www.researchgate.net/publication/362773606_Theoretical_investigation_of_charge_transfer_at_N3_sensitized_molecule_dye_contact_with_TiO2_and_ZnO_semiconductor [accessed May 01 2023].