The study discusses the marketing profile of electoral candidates and politicians especially the image that takes root in the minds of voters has become more important than the ideologies in the technological era or their party affiliations and voters are no longer paying attention to the concepts of a liberal, conservative, right-wing or secular, etc. while their interests have increased towards candidates. The consultants and image experts are able to make a dramatic shift in their electoral roles. They, as specialists in the electoral arena, dominate the roles of political parties.
The importance of the study comes from the fact that the image exceeds its normal framework in our contemporary world to become political and cultural industry with its environment, tools and systematic action.
The study aims to find out the psychological, cultural and political values contained in the image that embodies political symbols. It covers the sides and relations of image’s strength and its political and social functions which now represent the candidates and citizens within the contemporary political marketing operations.
The study tends to use descriptive approach to review the prosperities of the political image and mechanisms of those in charge of image makers. It also includes analysis of the functional role of the image in the political marketing.
Abstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreIslamic Culture face many challenges Such as، Secularism، westrenism، globalism and Colonialism under current attempts For western States and united states of America to dominate on world and Confront all her Opponent Polaris it be clear when U. S. A. Occupied Afghanistan and Iraq and Threatened many Arabic and Islamic States
Islamic Culture face many challenges Such as، Secularism، westrenism، globalism and Colonialism under current attempts For western States and united states of America to dominate on world and Confront all her Opponent Polaris it be clear when U. S. A. Occupied Afghanistan and Iraq and Threatened many Arabic and Islamic States
Multispectral remote sensing image segmentation can be achieved using a multithresholding technique. This paper studies the effect of changing the window size of the two dimensional (2D) fast Otsu algorithm that presented by Zhang. From the results, it shown that this method behaves as a search machine for the valleys (an automatic threshold), between the gray levels of the histogram with changing the size of slide window.
Keywords Image Segmentation, (2D) Fast Otsu method, Multithresholding, Automatic thresholding, (2D) histogram image.
FG Mohammed, HM Al-Dabbas, Science International, 2018 - Cited by 2
Pan sharpening (fusion image) is the procedure of merging suitable information from two or more images into a single image. The image fusion techniques allow the combination of different information sources to improve the quality of image and increase its utility for a particular application. In this research, six pan-sharpening method have been implemented between the panchromatic and multispectral images, these methods include Ehlers, color normalize, Gram-Schmidt, local mean and variance matching, Daubechies of rank two and Symlets of rank four wavelet transform. Two images captured by two different sensors such as landsat-8 and world view-2 have been adopted to achieve the fusion purpose. Different fidelity metric like MS
... Show MoreCorona Virus Disease-2019 (COVID-19) is a novel virus belongs to the corona virus's family. It spreads very quickly and causes many deaths around the world. The early diagnosis of the disease can help in providing the proper therapy and saving the humans' life. However, it founded that the diagnosis of chest radiography can give an indicator of coronavirus. Thus, a Corner-based Weber Local Descriptor (CWLD) for COVID-19 diagnostics based on chest X-Ray image analysis is presented in this article. The histogram of Weber differential excitation and gradient orientation of the local regions surrounding points of interest are proposed to represent the patterns of the chest X-Ray image. Support Vector Machine (SVM) and Deep Belief Network (DBN)
... Show MoreSocial media and networks rely heavily on images. Those images should be distributed in a private manner. Image encryption is therefore one of the most crucial components of cyber security. In the present study, an effective image encryption technique is developed that combines the Rabbit Algorithm, a simple algorithm, with the Attractor of Aizawa, a chaotic map. The lightweight encryption algorithm (Rabbit Algorithm), which is a 3D dynamic system, is made more secure by the Attractor of Aizawa. The process separates color images into blocks by first dividing them into bands of red, green, and blue (RGB). The presented approach generates multiple keys, or sequences, based on the initial parameters and conditions, which are
... Show More