The research deals with an analytical approach between new media and traditional one in the light of the changes imposed by technology, which has been able to change a number of common concepts in the field of communication and media. The researcher tries to find an analytical explanation of the relationship between technology by being an influential factor in building the information society, which is the basis of new media, and the technical output that influenced the forms of social relations and linguistic construction as a human communication tool. The research deals with an analytical approach between new media and traditional one in the light of the changes imposed by technology, which has been able to change a number of common concepts in the field of communication and media. The researcher tries to find an analytical explanation of the relationship between technology by being an influential factor in building the information society, which is the basis of new media, and the technical output that influenced the forms of social relations and linguistic construction as a human communication tool. The researcher formulated the problem of the research with s set of questions: 1- What is the language of communication in the new media? 2- What is the relationship between new media and the traditional one? The researcher concludes with a number of results. These are as follow: 1- There is a change in the language used in the new media according to the need required by the technical system of social communication2- There is a relationship between the new media and the traditional one based on the mutual need for information and the difference stems from the great ability of the impact of technology in the new media and the continuous adaptation of the elements of the communication process in the new media with technological results3- There is a need to theoretical construction that enables the communication process to progress according to the concept of speed and time as factors in the communication process and a product of the development of technology.
In this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased
... Show MoreAn experimental study was conducted on pressure drop of water flow through vertical cylindrical packed beds in turbulent region and the influence of the operating parameters on its behavior. The bed packing was made of spherical and non-spherical particles (spheres, Rasching rings and intalox saddle) with aspect ratio range 3.46 D/dp 8.486 obtaining bed porosities 0.396 0.84 and Reynolds number 1217 21758. The system is consisted of 5 cm inside diameter Perspex column, 50 cm long; distilled water was pumped through the bed with flow rate 875, 1000, 1125, 1250,1375 and 1500 l/h and inlet water temperature 20, 30, 40 and 50 ˚C. The packed bed system was monitored by using LabVIEW program, were the result
... Show MoreThe integration of arti cial intelligence (AI), whether through devices or software, has become a critical tool in analyzing and evaluating technical performance. AI signi cantly contributes to enhancing athletic performance by enabling accurate data analysis and supporting educators in developing effective training programs and interactive curricula. This study addresses a noticeable gap in the literature regarding the attitudes and inclinations of educators toward AI in physical education and sport sciences—a gap often attributed to limited awareness and lack of access to moderntechnologies.Theprimaryaimofthestudyistoexaminethetendenciesandperceptionsoffemaleinstructorsin physical education and sport sciences toward the use of AI
... Show MoreKE Sharquie, AA Noaimi, WK Al-Janabi, The Iraqi Postgraduate Medical Journal, 2013 - Cited by 3
In this work, 332 Al alloy was prepared and reinforced with (0.5% and 1%) nano-Al2O3 particles. The prepared unreinforced and reinforced 332 Al alloy with nano-Al2O3 were solution heat treated (T6) at 510 ̊C and aged at 225 ̊C with different times (1, 3, and 5 h). Hardness test was performed on all the prepared alloys. All prepared alloys were dry slided under different applied loads (5, 10, 15, and 20 N) against steel counterface surface using pin on disk apparatus. The results showed that refinement effect was observed after addition of nano-Al2O3 particles and a change in silicon morphology after performing the solution heat treatment. The results also showed that har
... Show MoreA. chroococcum isolate was examined for its ability to produce the hydrolytic enzymes chitinase, pectinase, protease, and lipase, in an effort to enhance the growth of fava bean (Vicia faba). Biological experiment was conducted in pots with complete random design (CRD). The experiment includes three treatments: control (plant without treatment) (P), NPK fertilizer (plant + fertilizer) (PF), and A. chroococcum inoculum (plant + A. chroococcum) (PA). These treatments were performed with sterile and non-sterile soil, which were planted with fava beans. At the end of experiment (seven weeks from planting), length and weight of plant shoot and plant root were calculated. The results show that the isolate wa
... Show MoreLet G be a graph with p vertices and q edges and be an injective function, where k is a positive integer. If the induced edge labeling defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is determined.