Preferred Language
Articles
/
aYZ1f4YBIXToZYALvYxK
استعمال انحدار الاسقاطات المتلاحقة و الشبكات العصبية في تجاوز مشكلة البعدية
...Show More Authors

المستخلص يهدف هذا البحث الى تجاوز مشكلة البعدية من خلال طرائق الانحدار اللامعلمي والتي تعمل على تقليل جذر متوسط الخطأ التربيعي (RMSE) , أذ تم  استعمال طريقة انحدار الاسقاطات المتلاحقة  (PPR)    ,والتي تعتبر احدى طرائق اختزال الابعاد التي تعمل على تجاوز مشكلة البعدية (curse of dimensionality) , وان طريقة (PPR) من التقنيات الاحصائية التي تهتم بأيجاد الاسقاطات الاكثر أهمية في البيانات المتعددة الابعاد , ومع ايجاد كل اسقاط تتقلص البيانات بواسطة المركبات الخطية على طول الاسقاط ويتم تكرار العملية لايجاد اسقاطات جيدة لحين الحصول على افضل الاسقاطات والفكرة الاساسية لانحدار الاسقاطات المتلاحقة (PPR) هو نمذجة الانحدار المتعدد كمجموع للدوال غير الخطية للتراكيب الخطية للمتغيرات . ومن اجل التخلص من مشكلة البعدية تم استعمال اسلوبين الاسلوب الاول طريقة انحدار الاسقاطات المتلاحقة (PPR ) المقترحة والاسلوب الثاني طريقة الشبكات العصبية ( NN ) المتمثلة ( بالانبعاث الخلفي للخطأ )  وهي من الطرائق المستخدمة في اختزال الابعاد , وقد تم اجراء دراسة محاكاة للمقارنة بين الطرائق المستخدمة  وتم التوصل من خلال تجارب المحاكاة الى استنتاجات بينت ان الطريقة (NN) في هذا البحث اعطت نتائج افضل مقارنة بطريقة ( PPR )  اعتمادا على معيار جذر متوسط مربعات الخطأ (RMSE).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Data Mining Techniques for Iraqi Biochemical Dataset Analysis
...Show More Authors

This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
User-Oriented Preference Toward a Recommender System
...Show More Authors

            Nowadays, it is convenient for us to use a search engine to get our needed information. But sometimes it will misunderstand the information because of the different media reports. The Recommender System (RS) is popular to use for every business since it can provide information for users that will attract more revenues for companies. But also, sometimes the system will recommend unneeded information for users. Because of this, this paper provided an architecture of a recommender system that could base on user-oriented preference. This system is called UOP-RS. To make the UOP-RS significantly, this paper focused on movie theatre information and collect the movie database from the IMDb website that provides informatio

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
...Show More Authors

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression Testing
...Show More Authors

 

Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Effects of Macroeconomic Variables on Gross Domestic Product in Saudi Arabia using ARDL model for the period 1993-2019
...Show More Authors

 

This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A comparison of the Semiparametric Estimators model smoothing methods different using
...Show More Authors

In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes  n=40,60,100,variances used σ2=0.5,1,1.5 the results  for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the

... Show More
View Publication Preview PDF
Crossref