Preferred Language
Articles
/
aYZ1f4YBIXToZYALvYxK
استعمال انحدار الاسقاطات المتلاحقة و الشبكات العصبية في تجاوز مشكلة البعدية
...Show More Authors

المستخلص يهدف هذا البحث الى تجاوز مشكلة البعدية من خلال طرائق الانحدار اللامعلمي والتي تعمل على تقليل جذر متوسط الخطأ التربيعي (RMSE) , أذ تم  استعمال طريقة انحدار الاسقاطات المتلاحقة  (PPR)    ,والتي تعتبر احدى طرائق اختزال الابعاد التي تعمل على تجاوز مشكلة البعدية (curse of dimensionality) , وان طريقة (PPR) من التقنيات الاحصائية التي تهتم بأيجاد الاسقاطات الاكثر أهمية في البيانات المتعددة الابعاد , ومع ايجاد كل اسقاط تتقلص البيانات بواسطة المركبات الخطية على طول الاسقاط ويتم تكرار العملية لايجاد اسقاطات جيدة لحين الحصول على افضل الاسقاطات والفكرة الاساسية لانحدار الاسقاطات المتلاحقة (PPR) هو نمذجة الانحدار المتعدد كمجموع للدوال غير الخطية للتراكيب الخطية للمتغيرات . ومن اجل التخلص من مشكلة البعدية تم استعمال اسلوبين الاسلوب الاول طريقة انحدار الاسقاطات المتلاحقة (PPR ) المقترحة والاسلوب الثاني طريقة الشبكات العصبية ( NN ) المتمثلة ( بالانبعاث الخلفي للخطأ )  وهي من الطرائق المستخدمة في اختزال الابعاد , وقد تم اجراء دراسة محاكاة للمقارنة بين الطرائق المستخدمة  وتم التوصل من خلال تجارب المحاكاة الى استنتاجات بينت ان الطريقة (NN) في هذا البحث اعطت نتائج افضل مقارنة بطريقة ( PPR )  اعتمادا على معيار جذر متوسط مربعات الخطأ (RMSE).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Predicting Biochemical Oxygen Demand at the Inlet of Al-Rustumiya Wastewater Treatment Plant Using Different Mathematical Techniques
...Show More Authors

Water quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their perfor

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Interactive Effects of Major Insect Pest of Watermelon on its Yield in Wukari, Nigeria
...Show More Authors

Watermelon is known to be infested by multiple insect pests both simultaneously and in sequence. Interactions by pests have been shown to have positive or negative, additive or non additive, compensatory or over compensatory effects on yields. Hardly has this sort of relationship been defined for watermelon vis-à-vis insect herbivores. A 2-year, 2-season (4 trials) field experiments were laid in the Research Farm of Federal University Wukari, to investigate the interactive effects of key insect pests of watermelon on fruit yield of Watermelon in 2016 and 2017 using natural infestations. The relationship between the dominant insect pests and fruit yield were determined by correlation (r) and linear regression (simple and multiple) analys

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Nov 08 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Suggested Technique for Creating Physical Growth Curves Charts for Anthropometric Measurements in Admixed form in a sample of children under two years of age In Diyala Governorate
...Show More Authors

Objective: This study aimed to assessing new suggested technique of Physical Growth Curves (PGC) charts in
children under two years old of a non-probability sample.
Methodology: A non-probability sample of size (420) children under two years selected from 12 Primary
Health Care Centers in Diyala governorate during the period from 15th Nov. 2010 to 13th Mar. 2011
according to admix of a different properties together in one chart/or growth curve chart included in at least
weight, Height, and Head circumference.
Results: the results showed different properties that can be admix together in one chart/or growth curve
chart included in at least weight, Height, and Head circumference. And to overtake the problem of the norm

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
SUGGESTING MULTIPHASE REGRESSION MODEL ESTIMATION WITH SOME THRESHOLD POINT
...Show More Authors

The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Https://www.researchgate.net/journal/university-of-baghdad-engineering-journal-1726-4073
Electrical Conductivity as a General Predictor of Multiple Parameters in Tigris River Based on Statistical Regression Model
...Show More Authors

Surface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very

... Show More
Crossref (1)
Crossref
Publication Date
Sat Apr 03 2021
Journal Name
Lubricants
UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil
...Show More Authors

Samples of gasoline engine oil (SAE 5W20) that had been exposed to various oxidation times were inspected with a UV-Visible (UV-Vis) spectrophotometer to select the best wavelengths and wavelength ranges for distinguishing oxidation times. Engine oil samples were subjected to different thermal oxidation periods of 0, 24, 48, 72, 96, 120, and 144 hours, resulting in a range of total base number (TBN) levels. Each wavelength (190.5 – 849.5 nm) and selected wavelength ranges were evaluated to determine the wavelength or wavelength ranges that could best distinguish among all oxidation times. The best wavelengths and wavelength ranges were analyzed with linear regression to determine the best wavelength or range to predict oxidation t

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Agricultural And Statistical Sciences
ON ERROR DISTRIBUTION WITH SINGLE INDEX MODEL
...Show More Authors

In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.

Scopus
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi Parametric Logistic Regression Model with the Outputs Representing Trapezoidal Intuitionistic Fuzzy Number
...Show More Authors

In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.

the model was estimated on simulati

... Show More
View Publication Preview PDF
Crossref