The dyes Azo have a lengthy history and are a vital part of our daily lives. There are numerous potentials uses for these substances and their derivatives in various industries and environmental and biological research. In this study conversion of various azo compounds into other derivatives, complexes, and polymers was accomplished. This review included examining the chemistry reactions, synthesis, and applications of azo dye ligands and their complexes, mentioned spectral, analytical, thermal, and morphology methods of investigation, and confirmed by mass fragment mechanisms for some azo dyes and metal complexes. One of the aims of this review is to explain the role of these azo dye derivatives and the effect of metal complexes on leather which exhibits high light fastness, wash fastness, and rubbing fastness. The interaction of DNA has also been achieved. New metal complexes (Co (II), Ni (II), Cu (II), and Zn (II) azo ligands derived from 4-amino antipyrine and 4-aminoacetophenone are reported. The nature of the compounds has been studied followed by methods of continuous contrast, Beer's law, and molar ratio. Analytical methods and spectra revealed the octahedral geometry of the complexes. The azo dye ligand and its metal (II) complexes possess appreciable microbial activities. Novel heterocyclic compounds and its complexes have been investigated. The relationship between the HOMO-LUMO gap and antibacterial activity was investigated computationally. Improved understanding of binding mechanisms was shown by the comparative molecular docking investigations. This review demonstrated the utilization of the polycrystalline Zn (II) metal complex as a sensitizer in organic dye-sensitized solar cells. Quinolinyl-azo-naphthol (HL) is a selective turn-on chemosensor for Al3+ in the presence of other ions, exhibiting a 750-fold rise in emission at 612 nm following activation at visible light (537 nm). The reported limit of detection (LOD) for the 3σ technique is 0.69 nM. During this review it was proven that the effective production of palladium nanoparticles with guar gum as a stabilizer and their use as a catalyst in reduction processes and azo dye degradation. The investigation describing and assessing thiazolyl azo ligand complexes with specific metal ions has been presented.( Zn (II), Cu (II), Co (II), and Ni (II) ) complexes with azo ligands generated from metoclopramide hydrochloride were examined for their industrial and biological applications in cotton fabric dyeing, as well as for light and cleaner firmness. Additionally, the evaluation of the ligand and their complexes' antimicrobial and antifungal capabilities revealed that the ZnL molecule had the strongest antibacterial activity. The application characteristics of thiophene-derived dispersion dyes complexed with Zn, Cu, and Co metal on (polyester and Nylon 6.6), showed good to excellent light fastness, good to excellent wash fastness, excellent fastness to perspiration and sublimation, and good levelness on both materials with varying shades of brown and violet. The azo benzoic acid ligand derived from 2,4-dimethylphenol and 4-aminobenzoic acid has been identified by several spectroscopic methods and has been used as dispersion dyes on cotton textiles to test the antibacterial properties of the chemicals generated against a range of bacteria and fungus. Each primed complex has been proposed to have a tetrahedral geometrical structure for the obtained datum. There have been reports on the use of azo dyes in combination with nickel and its uses in dye-sensitized solar cells. Ten complexes of metals including Zn (II), Cu (II), Cd (II), Ni (II), and Co (II) as well as Phloroglucinol and antipyrine were used to create two unique azo-colorants, which were isolated and examined using a variety of techniques, wool, polyamide, and poly acetate fibers exhibit coloristic activity toward H3L1 and H3L2 as well as their metal complexes, demonstrating their strong resistance to UV radiation. Both in static and dynamic settings, the H3L2 compound exhibited a good sorption activity towards heavy metal cations from aqueous solutions of trace concentrations. A particular combination of selected transition metal ions is complexed with the azo compound, which is obtained from the (2-hydroxy quinoline: synthesis, characterization, thermal analysis, and antioxidant activity). These compounds' reactive oxygen entity degradation was evaluated with the DPPH radical and subsequently compared to gallic acid, a standard naturally occurring antioxidant. Finally, this review explains the metal chelates of the azo dye derivative sulfafurazole through synthesis, structure confirmation, molecular docking simulation, antibacterial, anticancer, and application in bioinorganic chemistry.
Cancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreThe geophysical testing is increasingly being employed in many geotechnical applications. It is preferred in monitoring the mechanical characteristics of the ground because of its economy, not time consuming and non-destructive nature. Seismic wave test is one of the geophysical methods which showed a potential in observing the general behaviour of the reinforced soil with stone columns. Findings in most cases showed that the seismic wave measurements was integrated with or compared to the conventional tests such as standard penetration test or cone penetration test. There was a noticeable success in identifying the enhancement achieved to the ground upon the strengthening with the column, specifically when the associated surveys can produc
... Show MoreThe purple pigment violacein is produced by Gram-negative bacteria, mainly from the Chromobacterium violaceum. Violacein is synthesized by fusing two Ltryptophan molecules using five different enzymes encoded by VioA, VioB, VioC, VioD, and VioE genes. These genes have transferred to genetically engineering microorganisms such as E.coli for high production of violacein. It is receiving greater interest because of its significant biological functions and therapeutic potential. The reviews outlining the biosynthesis, production, and biological significance of violacein are being published.
Blastocystosis is symptomatic infection caused by the protozoal parasite Blastocystis , which resides in the intestinal tract of its hosts and it is one of the most common parasites reported in humans. It’s prevalence ranges between (30 - 50%) of the population in developing countries. This genus has a worldwide distribution and often the most commonly reported human intestinal protozoan in children and adults, even infect infants
Coupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector
... Show MoreA thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreThrust blocks and restraint joints are the two most popular methods of counteracting the thrust force that generated at pipe fittings (bends, Tee, wye, reducers, dead ends, etc…). Both systems perform the same function, which is to prevent the joints from separating from the pipes. The aim of the study is to review previous studies and scientific theories related to the study and design of thrust blocks and restraint joints to study the behavior of both systems under thrust force and to study the factors and variables that affect the behavior of these systems. The behavior of both systems must be studied because they cannot be abandoned, as each system has conditions whose use is more feasible, scientific, and economic
... Show More