The dyes Azo have a lengthy history and are a vital part of our daily lives. There are numerous potentials uses for these substances and their derivatives in various industries and environmental and biological research. In this study conversion of various azo compounds into other derivatives, complexes, and polymers was accomplished. This review included examining the chemistry reactions, synthesis, and applications of azo dye ligands and their complexes, mentioned spectral, analytical, thermal, and morphology methods of investigation, and confirmed by mass fragment mechanisms for some azo dyes and metal complexes. One of the aims of this review is to explain the role of these azo dye derivatives and the effect of metal complexes on leather which exhibits high light fastness, wash fastness, and rubbing fastness. The interaction of DNA has also been achieved. New metal complexes (Co (II), Ni (II), Cu (II), and Zn (II) azo ligands derived from 4-amino antipyrine and 4-aminoacetophenone are reported. The nature of the compounds has been studied followed by methods of continuous contrast, Beer's law, and molar ratio. Analytical methods and spectra revealed the octahedral geometry of the complexes. The azo dye ligand and its metal (II) complexes possess appreciable microbial activities. Novel heterocyclic compounds and its complexes have been investigated. The relationship between the HOMO-LUMO gap and antibacterial activity was investigated computationally. Improved understanding of binding mechanisms was shown by the comparative molecular docking investigations. This review demonstrated the utilization of the polycrystalline Zn (II) metal complex as a sensitizer in organic dye-sensitized solar cells. Quinolinyl-azo-naphthol (HL) is a selective turn-on chemosensor for Al3+ in the presence of other ions, exhibiting a 750-fold rise in emission at 612 nm following activation at visible light (537 nm). The reported limit of detection (LOD) for the 3σ technique is 0.69 nM. During this review it was proven that the effective production of palladium nanoparticles with guar gum as a stabilizer and their use as a catalyst in reduction processes and azo dye degradation. The investigation describing and assessing thiazolyl azo ligand complexes with specific metal ions has been presented.( Zn (II), Cu (II), Co (II), and Ni (II) ) complexes with azo ligands generated from metoclopramide hydrochloride were examined for their industrial and biological applications in cotton fabric dyeing, as well as for light and cleaner firmness. Additionally, the evaluation of the ligand and their complexes' antimicrobial and antifungal capabilities revealed that the ZnL molecule had the strongest antibacterial activity. The application characteristics of thiophene-derived dispersion dyes complexed with Zn, Cu, and Co metal on (polyester and Nylon 6.6), showed good to excellent light fastness, good to excellent wash fastness, excellent fastness to perspiration and sublimation, and good levelness on both materials with varying shades of brown and violet. The azo benzoic acid ligand derived from 2,4-dimethylphenol and 4-aminobenzoic acid has been identified by several spectroscopic methods and has been used as dispersion dyes on cotton textiles to test the antibacterial properties of the chemicals generated against a range of bacteria and fungus. Each primed complex has been proposed to have a tetrahedral geometrical structure for the obtained datum. There have been reports on the use of azo dyes in combination with nickel and its uses in dye-sensitized solar cells. Ten complexes of metals including Zn (II), Cu (II), Cd (II), Ni (II), and Co (II) as well as Phloroglucinol and antipyrine were used to create two unique azo-colorants, which were isolated and examined using a variety of techniques, wool, polyamide, and poly acetate fibers exhibit coloristic activity toward H3L1 and H3L2 as well as their metal complexes, demonstrating their strong resistance to UV radiation. Both in static and dynamic settings, the H3L2 compound exhibited a good sorption activity towards heavy metal cations from aqueous solutions of trace concentrations. A particular combination of selected transition metal ions is complexed with the azo compound, which is obtained from the (2-hydroxy quinoline: synthesis, characterization, thermal analysis, and antioxidant activity). These compounds' reactive oxygen entity degradation was evaluated with the DPPH radical and subsequently compared to gallic acid, a standard naturally occurring antioxidant. Finally, this review explains the metal chelates of the azo dye derivative sulfafurazole through synthesis, structure confirmation, molecular docking simulation, antibacterial, anticancer, and application in bioinorganic chemistry.
This paper reviews the studies on expansive soil with a main focus on failure mechanism, financial losses, mineralogy, determination of swelling parameters and others. Effect of hydrocarbon pollution on geotechnical properties of expansive soil was presented. The paper discussed the assessment of electrical response of contaminated swelling soils. Wide extend of expansive grounds around the world and the serious impact created on infrastructures requires to identify its influential aspects and the appropriate treatments. Also, it was found that petroleum product affect significantly on the basic properties of swelling soils such as gradation, consistency, compaction, swelling and othe
Ketoprofen has recently been proven to offer therapeutic potential in preventing cancers such as colorectal and lung tumors, as well as in treating neurological illnesses. The goal of this review is to show the methods that have been used for determining ketoprofen in pharmaceutical formulations. Precision product quality control is crucial to confirm the composition of the drugs in pharmaceutical use. Several analytical techniques, including chromatographic and spectroscopic methods, have been used for determining ketoprofen in different sample forms such as a tablet, capsule, ampoule, gel, and human plasma. The limit of detection of ketoprofen was 0.1 ng/ ml using liquid chromatography with tandem mass spectrometry, while it was 0
... Show MoreTrimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used
This study examines the structural performance of concrete-encased pultruded Glass Fiber Reinforced Polymer (GFRP) I-sections with shear connections. It specifically focuses on how different parameters affect the latter’s ductility, flexural strength, and load-carrying capacity. The key variables studied include various shear connector types, spacing, and geometries, as well as the compressive strength of concrete and the properties of GFRP. The finite element modeling and experimental validation show that the shear connectors significantly improve the ductility, ultimate capacity, and load transmission efficiency. The present review emphasizes that the shear connectors greatly enhance the structural performance when they are prop
... Show MoreBackground: Elastomeric chains are used to generate force in many orthodontic procedures, but this force decays over time, which could affect tooth movement. This study aimed to study the force degradation of elastomeric chains. Data and Sources: An electronic search on Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, LILACS, and PubMed was made, only articles written in English were included, up to January 2022.Study selection: Fifty original articles, systematic reviews, and RCTs were selected. Conclusion: Tooth movement, salivary enzymes, alcohol-containing mouthwash, whitening mouthwash, and alkaline and strong acidic (pH <5.4) solutions all have a significant impact on elastomeric chain force degradation. T
... Show MoreBackground: Elastomeric chains are used to generate force in many orthodontic procedures, but this force decays over time, which could affect tooth movement. This study aimed to study the force degradation of elastomeric chains. Data and Sources: An electronic search on Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, LILACS, and PubMed was made, only articles written in English were included, up to January 2022.Study selection: Fifty original articles, systematic reviews, and RCTs were selected. Conclusion: Tooth movement, salivary enzymes, alcohol-containing mouthwash, whitening mouthwash, and alkaline and strong acidic (pH <5.4) solutions all have a significant impact on elastomeric chain force degradation. The fo
... Show More