Pseudomonas aeruginosa readily binds to different kind of abiotic surfaces and form biofilm. The ability of the bacterial species to form biofilm onto polyvinyl chloride (PVC) is associated with several economic, health and environmental problems. The effect of kind of water on ability of this bacterium to form biofilm is scanty in literature. In present study, the ability of different environmental isolates of P. aeruginosa to form biofilm onto polystyrene microtiter plate was evaluated. Furthermore, the effect of waters that collected from different sources on biofilm formation of this bacterium onto PVC was studied. Spectrophotometric method was used to check the ability of bacteria to form biofilm and evaluated the role of waters onto ability of P. aeruginosa to form biofilm. The current study showed that all environmental isolates of P. aeruginosa had a good ability to form biofilm onto polystyrene microtiter plate. PAE1 showed the maximum ability of biofilm formation onto polystyrene microtiter plate. The water that collected from different places such as well water, river water, sewage water, distilled water, tap water and lake water showed negative effect (P<0.05) on the ability of PAE1 to form biofilm onto polystyrene microtiter plate and PVC as compared to normal saline. From present study, it can be concluded that all isolates of P. aeruginosa that isolated from soil had a good ability to biofilm formation. The waters that collected from different environmental areas affected negatively on ability of P. aeruginosa to form biofilm onto polystyrene and PVC.
One of the most important virulence factors in Pseudomonas aeruginosa is biofilm formation, as it works as a barrier for entering antibiotics into the bacterial cell. Different environmental and nutritional conditions were used to optimize biofilm formation using microtitre plate assay by P. aeruginosa. The low nutrient level of the medium represented by tryptic soy broth (TSB) was better in biofilm formation than the high nutrient level of the medium with Luria Broth (LB). The optimized condition for biofilm production at room temperature (25 °C) is better than at host temperature (37 °C). Moreover, the staining with 0.1% crystal violet and reading the biofilm with wavelength 360 are considered essential factors in
... Show MorePseudomonas aeruginosa is common gram negative rod – shaped bacterium, a species of considerable medical importance, P. aeruginosa is prototypical "multi drug resistant (MDR) Pathogen" that is recognised for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its associatation with serious illnesses – especially nosocomial infection such as ventilator – associated pneumonia and various sepsis syndromes. This study was conducted from March 2014 to July 2014, the patients were males and females. Total samples of 613 patients, selected from burns wards and general surgery wards, the samples were sending to teaching laboratories from the same hospital. The present study
... Show MoreThree isolates of P. aeruginosa were isolated from burnt patients. The ability of these isolates for adhesion and formation of slime layer were tested, the result showed that all isolates were able to adherence on the smooth surface. The sensitivity of P. aeruginosa isolates for antibiotics were tested , all isolates were sensitive to Gentamycin, Piperacillin and Amikacin Ciprofloxacin, and resist to Tetracyclin, Amoxicillin, Cephalexine , Ceftriaxone. Ciprofloxacin and Amikacin were found effective against P. aeruginosa isolates with MIC values of 3.8 μg/ ml for Ciprofloxacin and 0.244 μg/ ml for Amikacin The antibacterial effect of Different concentrations of Aloe
... Show MoreStaphylococcus aureus and Pseudomonas aeruginosa are the major globally distributed pathogens, which causes chronic and recalcitrant infections due to their capacity to produce biofilms in large part. Biofilm production represents a survival strategy in these species, allowing them to endure environmental stress by altering their gene expression to match their own survival needs. In this study, we co-cultured different clinical isolates of S. aureus and P. aeruginosa as mono- and mixed-species biofilms in a full-strength Brain Heart Infusion Broth (BHI) and in a 1000-fold diluted Brain Heart Infusion Broth (BHI/1000) using Microtiter plate assay and determination of colony-forming units. Furthermore, the effect of starvation stress on the e
... Show MoreTwo Pseudomonas putida isolated from soils of plants roots. The bacterial isolates were identified by morphological tests. Biochemical reactions the result confirmed that they belong to p.putida. The bacterial isolates were produced hydrolases enzymes such as pectinase, protease and phosphates (Phosphate solubilization) by these isolates were screened. All P. putida isolates were able to produce these types of enzymes.
Pseudomonas aeruginosa is a common and major opportunistic human pathogen, its causes many and dangersinfectious diseases due to death in some timesex: cystic fibrosis , wounds inflammation , burns inflammation , urinary tract infection , other many infections otitis external , Endocarditis , nosocomial infection and also causes other blood infections (Bacteremia). thereforebecomes founding fast and exact identification of P. aeruginosafrom samples culture very important.However, identification of this species may be problematic due to the marked phenotypic variabilitydemonstrated by samples isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA(rRNA) sequence data
... Show MoreIn this research, a type of gram negative bacteria was exposed to non-thermal plasma at a distance of (2 and 3 cm) from the plasma flow nozzle, with the use of an alternating power supply (5KHz), where exposure was made at two different voltages (4.9 and 8 kV). A negative gram of Pseudomonas aeruginosa bacteria was isolated and exposed to non-thermal plasma at different flow rates of argon gas whose value ranged from (1-5) liters/minute. The results showed that bacterial killing rate is directly proportional to distance while exposing the samples to non-thermal plasma, and the best factors by which a complete killing rate was obtained were at a distance of 2 cm with a voltage of 8 kV and a gas flow rate of 5 liters/min,
... Show MoreOut of 120 isolates from different clinical cases, only 75 were found and confirmed that they belong to the Pseudomonas aeruginosa bacteria. The result revealed that the LasB virulent gene was present in 63 isolates with 63% percentage. The gel electrophoresis showed that the molecular weight of LasB gene was 300 bp. DNA sequences of LasB gene was done, and the results showed the presence of some gene mutations like substitution, addition and deletion with 97% identity with the Refseq gene. From the other side, the results of identities of translated nucleotides sequence with the original sequence of amino acids revealed that there are no effects of gene mutations on translation of the product protein.
The aim of this study is to investigate the role of prodigiosin on P. aeruginosa' s biofilm genes involved in the pathogenicity and persistency of the bacteria; Materials and methods: Gram negative bacterial isolates were taken from burn and wounds specimen obtained from some of Baghdad hospitals. Forty six isolates were identified as Pseudomonas aeruginosa and four isolates as Serratia marcescens by using biochemical tests and VITEK 2 compact system. Susceptibility test was performed for all P. aeruginosa isolates, the results showed that 100% were resistant to Amikacin and 98% were sensitive to Meropenem. Resistant isolates were tested for biofilm formation; the strong and moderate isolates (17) were detected by PCR for AlgD gene
... Show MoreThe entire investigation's focus was on the production of nickel oxide nanoparticles (NiONPs), using prodigiosin pigments produced by Serratia marcescens as a stabilizing and reducing agent. Nickel oxide nanoparticles are synthesized using nickel sulfate NiSO4 (10mg) with a concentration of prodigiosin (10g/100ml). Biosynthesized NiO nanoparticles have been characterized by using many techniques, such as (UV-Vis, AFM, XRD, FTIR, and FE-SEM). The AFM analysis revealed that NiONPs have an average diameter size of (41.77 mm), and the FE-SEM Image displays Spherical. Additionally, the effect of NiONPs with different concentrations on the bacteria Pseudomonas aeruginosa was measured and the inhibition
... Show More