The 3-aminoacetophenone and 4-aminoantipyrine were used as precursors to prepare new six ligands. The three new ligands (L1,L2 and L3) were synthesis by reacting one mole of 3-aminoacetophenone with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as a solvent, they are:- L1 (AAA) =[N-(3-acetylphenylcarbamothioyl)acetamide] L2 (BAA) =[N-(3-acetylphenylcarbamothioyl)benzamide] L3 (MAA) =[N-(3-acetylphenylcarbamothioyl)-4-methoxy benzamide] Also three new derivatives of 4-aminoantipyrine were synthesis by reacting one mole of 4-aminoantipyrine with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as solvent and the ligands are given: L4 (AAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)acetamide] L5 (BAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)benzamide] L6 (MAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)-4-methoxybenzamide] These ligands were identified by FT-IR ,1H,13C-NMR,elemental analysis(C.H.N.S), electronic spectra, the molecular formula of there were concluded:- L1 (AAA) = C11H12O2N2S L2 (BAA) = C16H14O2N2S L3 (MAA) = C17H16O3N2S L4 (AAD) = C14H16N4O2S L5 (BAD) = C19H18O2N4S L6 (MAD) = C20H20O3N4S The ligands were reacted with some metal ions (M+2 =VO, Mn, Co, Ni, Cu, Zn, Cd , Hg and Pd), to give complexes with molecular formulas:- [M(AAA)2(H2O)2]Cl2 , [M(BAA)2(H2O)2]Cl2 , [M(MAA)2(H2O)2]Cl2, [M(AAD)2(H2O)2]Cl2 , [M(BAD)2(H2O)2]Cl2, [M(MAD)2(H2O)2]Cl2 Where (M+2 = Mn, Co, Ni, Cu, Zn, Cd , Hg and Pd) [VO(AAA)2]SO4 , [VO(BAA)2]SO4 , [VO(MAA)2]SO4, [VO(AAD)2]SO4 , [VO(BAD)2]SO4, [VO(MAD)2]SO4 The complexes were characterized by solubility, melting point and decomposition, FT-IR, electronic spectra, molar conductivity, magnetic susceptibility measurements, element microanalysis for some complexes and flame atomic absorption. From above results, one can conclude that complexes of (M+2 = Mn, Co, Ni, Cu, Zn, Cd, Hg and Pd) have an octahedral geometry while the square pyramid for complexes for(VO+2) The biological effects of ligands and some of their complexes have been investigated on two types of bacteria species Staphylococcus aureu a gram positive and Escherichia coli a gram negative In agricultural agar medium, the results exhibited all the compounds (expect Ni2+ with L1)have varsity anti bacterial activities
A novel azo dye ligand namely (2-(pyridin-3-yldiazenyl)naphthalen-1-ol (HPYNA), was synthesized by the coupling reaction of diazonium salt of 3-aminopyridine with naphthol. The palladium(II) complex for HPYNA ligand was prepared by reacting palladium(II) ions with the HPYNA ligand. These synthesized compounds were characterized using different techniques, including mass, 1H-NMR, infrared, and UV-Vis spectroscopy. The infrared results show that the azo ligand reacts as a bidentate via the oxygen atom of phenol and nitrogen atom of the azo group. The palladium(II) complex is square-planer with diamagnetic properties depending on the results of electronic transitions and magnetic sensitivity. The HPYNA ligand and palladium complex show
... Show MoreNew Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most ex
... Show MoreThe phenyl hydrazine was react readily with acetic acid chloride in [1:2] ratio in alkyl of ethanolic solution, and refluxe for five hours to produce a new ligand of (N-Carboxymethyl-N-phenyl-hydrazino)-acetic acid [H2L].
Complexes of 1-phenyl-3-(2(-5-(phenyl amino)-1,3,4-thiadiazole-2-yl)phenyl) thiourea have been prepared and characteizedby elemental analysis, Ff-[R, and u.v./ visible spectra moreover,determination of metal content M%o by flame atomic absorptionspectroscopy, molar conductance in DMSO solution and magneticmoments (peffl.The result showed that the ligand (L) was coordinated to Mn+2, Ni+2,Ct+2,2n+2,Cd+2, and Hg+2 ions through the nitrogen atoms and sulpheratoms.From the result obtained, rhe following general formula [MLCl2] hasbeen given for the prepared complexes with an octahedral geometryaround the metal ions for all complexes.where M= Mn+2, Ni+2, cu+2, zn+2, cd+2, and Hg+2 l= l-phenyl-3-(2-(5-(phenyl amino
... Show MoreComplexes of 1-phenyl-3-(2(-5-(phenyl amino)-1,3,4- thiadiazole-2-yl)phenyl) thiourea have been prepared and characteized by elemental analysis, Ff-[R, and u.v./ visible spectra moreover, determination of metal content M%o by flame atomic absorption spectroscopy, molar conductance in DMSO solution and magnetic moments (peffl. The result showed that the ligand (L) was coordinated to Mn*2, Ni*2, Ct*2,2n*2,Cd*2, and Hg*2 ions through the nitrogen atoms and sulpher atoms. From the result obtained, rhe following general formula [MLClz] has been given for the prepared complexes with an octahedral geometry around the metal ions for all complexes. where M= Mn*2, Ni*2, cu*2, zn*z, cd*z, and Hg*2 l= l-phenyl-3-(2-(5-(phenyl amino)-1, 3,
... Show MoreNew chalcones of -{ - - - y - - hi di z e- -y he y - - e e- - e- - - substituted phenyl have been prepared from condensation of a new of 4-[5-(4`-tolyl)1,3,4-thiadiazole-2-yl] benzaldehyde (which is synthesized by the reaction of 2- amino-5- (4`-tolyl) -1,3,4-thiadiazole and benzaldehyde) with 3- or 4- substituted acetophenones in alkaline medium. The physical, CHNS analysis and spectral data of the synthesized compounds were determined. The biological activity evaluated of new compounds showed that many of these compounds possess antiba
... Show MoreTridentate Schiff base ligand L2 and its complexes with nickel(II), cobalt (II), copper (II), manganese (II) and mercury (II) ions have been synthesized by the condensation of 4Aminoantipyrine, Benzoin, then the ligand (L1) and 3-amino benzoic acid. The ligand and its complexes were described by 1H-&13C-NMR, UV-visible, FT-IR, (only ligand), molar conductance elemental, analysis and magnetic susceptibility, calculations. It has been set that the ligand acts as (N, N, O) neutral tridentate forming chelates with stoichimetry (metal: ligand) (1:1). all metal complexes is suggested Octahedral configuration. Most of the prepared compounds show antibacterial activity to (Staphylococcus aureus),(Escherichia coli), (Bacillussubtilis) and (Ps
... Show MoreIn this work four complexes of antimony were prepared ,Na[SbO(gly)2],Na[SbO(Asp)2],Na[SbO(Tyrosin)2], Na [SbO(phen alanin)2]. by reaction SbOCl with salts amino acids identifiefid these complexes by FTIR ,their conductivity was measured and also their biological activity against two types of bacteria was studied ,they were biologically active.
Our work included a synthesis of three new imine derivatives—1,3-thiazinan-4-one, 1,3-oxazinan-6-one and 1,3-oxazepin-4,7-dione—which contained an adamantyl fragment. These were produced via the condensation of the Schiff`s base (E)-N-(adamantan-1-yl)-1-(3-aryl)methanimine with 3-mercaptopropanoic acid; 3-chloropropanoic acid; and maleic, citraconic anhydride, respectively. These new imines were prepared via the condensation of adamantan-1-ylamine and 3-nitro-, 3-bromobenzaldehyde in n-BuOH. We obtained a good yield of products. FTIR, 1H NMR spectroscopy and C.H.N.S analysis were used to diagnostic the products. The molecular structure of (E)-N-(adamantan-1-yl
... Show MoreA new carbonyl complexes of triazole and oxadiazole were synthesized. These complexes were identified and their structural geometric were suggested by using FT-IR and UV-Vis spectra, conductivity measurements and other chemical and physical properties. The spectra data (FT-IR, UV, Vis.) with the substantial aid of group theoretical calculations gave so many evidences for the proposed geometries and the type of bonding of these compounds