The 3-aminoacetophenone and 4-aminoantipyrine were used as precursors to prepare new six ligands. The three new ligands (L1,L2 and L3) were synthesis by reacting one mole of 3-aminoacetophenone with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as a solvent, they are:- L1 (AAA) =[N-(3-acetylphenylcarbamothioyl)acetamide] L2 (BAA) =[N-(3-acetylphenylcarbamothioyl)benzamide] L3 (MAA) =[N-(3-acetylphenylcarbamothioyl)-4-methoxy benzamide] Also three new derivatives of 4-aminoantipyrine were synthesis by reacting one mole of 4-aminoantipyrine with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as solvent and the ligands are given: L4 (AAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)acetamide] L5 (BAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)benzamide] L6 (MAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)-4-methoxybenzamide] These ligands were identified by FT-IR ,1H,13C-NMR,elemental analysis(C.H.N.S), electronic spectra, the molecular formula of there were concluded:- L1 (AAA) = C11H12O2N2S L2 (BAA) = C16H14O2N2S L3 (MAA) = C17H16O3N2S L4 (AAD) = C14H16N4O2S L5 (BAD) = C19H18O2N4S L6 (MAD) = C20H20O3N4S The ligands were reacted with some metal ions (M+2 =VO, Mn, Co, Ni, Cu, Zn, Cd , Hg and Pd), to give complexes with molecular formulas:- [M(AAA)2(H2O)2]Cl2 , [M(BAA)2(H2O)2]Cl2 , [M(MAA)2(H2O)2]Cl2, [M(AAD)2(H2O)2]Cl2 , [M(BAD)2(H2O)2]Cl2, [M(MAD)2(H2O)2]Cl2 Where (M+2 = Mn, Co, Ni, Cu, Zn, Cd , Hg and Pd) [VO(AAA)2]SO4 , [VO(BAA)2]SO4 , [VO(MAA)2]SO4, [VO(AAD)2]SO4 , [VO(BAD)2]SO4, [VO(MAD)2]SO4 The complexes were characterized by solubility, melting point and decomposition, FT-IR, electronic spectra, molar conductivity, magnetic susceptibility measurements, element microanalysis for some complexes and flame atomic absorption. From above results, one can conclude that complexes of (M+2 = Mn, Co, Ni, Cu, Zn, Cd, Hg and Pd) have an octahedral geometry while the square pyramid for complexes for(VO+2) The biological effects of ligands and some of their complexes have been investigated on two types of bacteria species Staphylococcus aureu a gram positive and Escherichia coli a gram negative In agricultural agar medium, the results exhibited all the compounds (expect Ni2+ with L1)have varsity anti bacterial activities
This new azo dye 7-(3-hydroxy-phenylazo)-quinoline-8-ol was subsequently used to prepare a series of complexes with the chlorides of Fe, Co, Zn, Ru, Rh and Cd. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a trigonal behavior, and that the complexes gave tetrahedral, except for Fe, Ru and Rh octahedral was given, that all of them are non-electrolytes. The effectiveness of both the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard substance, the
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreA new mixed ligand complexes have been prepared between 8- hydroxy quinoline and o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on with Mn(II),Fe(II),Co(II),Ni(II) and Cu(II) ions . the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Flame atomic absorption technique . in addition to magnetic susceptibility and conductivity measurement.
In this work, the ligand was obtained from the reaction of diazonium salt of naphthyl amine with 1-amino-2-naphtol-4-sulfonic acid. The bidentate ligand type (NO) donar atoms was reacted with 1,10-phenanthroline and matel salt in a 1:1:1 mole ratio to give the complexes, using NaOH as a base. Physical-chemical teqnichas were used to characteriz the prepared compounds FT-IR,U.V-Vis, fluorescence and 1HNMR spectroscopy, atomic absorption , chloride content along with conductivity and melting point measurements .Finally, thermal analysis was used to confirm the presence of coordination H2O molecule in the complexes structure. According to memtioned characterization methods, the general formula proposed for CoII ZnII, CdII and Hg
... Show MoreThis study includes synthesis of some nitrogenous heterocyclic compounds linked to amino acid esters or heterocyclic amines that may have a potential activity as antimicrobial and/or cytotoxic. Quinolines are an important group of organic compounds that possess useful biological activity as antibacterial, antifungal and antitumor .8-Hydroxyquinoline (8-HQ) and numerous of its derivatives exhibit potent activities against fungi and bacteria which make them good candidates for the treatment of many parasitic and microbial infection diseases.
These pharmacological properties of quinolones aroused our interest in synthesizing several new compounds featuring heterocyclic rings of the quinoline derivatives linke
... Show More